Poly(tetraethylene glycol malonate)–titanium oxide hybrid materials by sol–gel methods

(Note: The full text of this document is currently only available in the PDF Version )

Changsheng Deng, Peter F. James and Peter V. Wright


Abstract

Hybrid materials have been prepared through the sol–gel route from poly(tetraethylene glycol malonate) (PTEGM) and titanium isopropoxide (TIP) in acidic media. The bulk gels were characterised by thermal analysis (TG, DSC and TMA), wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM) and FTIR. The results indicate that the gel incorporates –Ti–O–Ti– crosslinks appended to the dicarbonyl functions of the malonate units. The deformation temperature increases fromca.–50 °C to ca. 200 °C for 1≥[TIP]/[TEGM]≥0. The gels are optically clear for [TIP]/[TEGM]<1. For 0.5≤[TIP]/[TEGM]≤1 TEM shows that particles ≤5 nm are present. At higher TIP concentration (>ca. 18 mass%) the gels become slightly opaque. WAXS showed that in all the gels (<200 °C) the titania incorporated in crosslinks or in particles was present as non-crystalline material.


References

  1. C. J. Brinker and G. W. Scherer, in Sol–Gel Science, The Physics and Chemistry of Sol–Gel Processing, Academic Press, San Diego, 1989 Search PubMed.
  2. Prospect Calorex®Das absolut farbneutrale Sonneureflexionsglas von Schott Glaswerke, Mainz, FRG, 1983 Search PubMed.
  3. D. B. Haddow, S. Kothari, P. F. James, R. D. Short and P. V. Hatton, Biomaterials, 1996, 17, 501 CrossRef CAS.
  4. M. Nabavi, S. Doeuff, C. Sanchez and J. Livage, Mater. Sci. Eng. B, 1989, 3, 203 Search PubMed.
  5. L. L. Hench, in Science of Ceramic Chemical Processing, ed. L. L. Hench and D. R. Ulrich, Wiley, New York, 1986, pp. 52–64 Search PubMed.
  6. B. Novak, Adv. Mater., 1993, 5, 422 CrossRef CAS.
  7. H. Schmidt, J. Sol–Gel Sci. Technol., 1994, 1, 217 Search PubMed.
  8. C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007 Search PubMed.
  9. U. Schubert, N. Husing and A. Lorenz, Chem. Mater., 1995, 7, 2010 CrossRef CAS.
  10. P. Judeinstein and C. Sanchez, J. Mater. Chem., 1996, 6, 511 RSC.
  11. (a) R. J. P. Corriu, D. Leclercq, A. Vioux, M. Pauthe and J. Phalippou, in Ultrastructure Processing of Advanced Ceramics, ed. J. D. Mackenzie and D. R. Ulrich, Wiley, New York, 1988, p. 113 Search PubMed; (b) R. J. P. Corriu, C. Guerin and J. E. E. Moreau, Top. Stereochem., 1984, 43 Search PubMed.
  12. C. Sanchez and M. In, J. Non-Cryst. Solids, 1992, 147–148, 1.
  13. L. Fieser and M. Fieser, in Organic Chemistry, Reinhold, New York, 1956, p. 221 Search PubMed.
  14. A. C. Tang and K. S. Yao, J. Polym. Sci., 1959, 35, 219 Search PubMed.
  15. A. Leaustic, F. Babonneau and J. Livage, Chem. Mater., 1989, 1, 240 CrossRef CAS.
  16. L. Bonhomme-Coury, F. Babonneau and J. Livage, J. Sol–Gel Sci. Technol., 1994, 3, 157 Search PubMed.
  17. C. S. Deng, P. V. Wright and P. F. James, J. Sol–Gel Sci. Technol., in press Search PubMed.
  18. G. Socrates, in Infrared Characteristic Group Frequencies, John Wiley and Sons, London, 1980, p. 62 Search PubMed.
  19. A. Yamamoto and S. Kambara, J. Am. Chem. Soc., 1957, 79, 4344 CrossRef CAS.
  20. J. Lecomte, Discuss. Faraday Soc., 1950, 9, 125 RSC.
  21. L. J. Bellamy and I. Beecher, J. Chem. Soc., 1954, 4489 Search PubMed.
  22. G. D. Smith, C. N. Caughlan and J. A. Campell, Inorg. Chem., 1972, 12, 2989 CrossRef.
  23. K. A. Mauritz and C. K. Jones, J. Appl. Polym. Sci., 1990, 40, 1402 CrossRef.
  24. D. R. Payne and P. V. Wright, Polymer, 1982, 23, 690 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.