X-Ray and NMR spectroscopic characterisation of cyclic titanodiphenylsiloxanes and examination of the hydrolytic stability of their Si–O–Ti bonds

(Note: The full text of this document is currently only available in the PDF Version )

Dagobert Hoebbel, Manfred Nacken, Helmut Schmidt, Volker Huch and Michael Veith


Abstract

Six crystalline titanodiphenylsiloxanes have been synthesised by reaction of diphenylsilanediol (DPSD) with titanium tetraisopropoxide or its complexes with acetylacetonate (acac) as ligand. Two of them show a spirocyclic structure with the formula TiO2 [O2Si2(C6H5)4 ]2A and TiO2 [O4Si4(C6H5)8 ]2B which have already been described in the literature. Two compounds C and D were identified by X-ray analysis to have the same bicyclic structure but different coordinating solvent molecules. Tetrahydrofuran acts as a non-bridging ligand at the Ti atoms in [Ti(acac)O1.5 ]2 [OSi(C6H5)2 ]3 ·2C4H8O C while dioxane acts as a bridging ligand between the Ti atoms of neighbouring molecules of [Ti(acac)O1.5 ]2 [OSi(C6H5)2 ]3 ·3C4H8O2D. The titanodiphenylsiloxanes E and F were identified by a cyclotetrameric structure and the formulas [Ti(acac)2O]2 [OSi(C6H5)2 ]2 and [Ti(acac)2O][OSi(C6H5)2 ]3 , respectively. The titanodiphenylsiloxanes AE were characterised by 29Si and 17O NMR spectroscopy, IR and time-of-flight mass spectrometry measurements. The hydrolytic stabilities of the Si–O–Ti bonds in the titanodiphenylsiloxanes AE have been examined mainly by means of 29Si NMR spectroscopy. The results reveal a strong influence of the structure type of the titanodiphenylsiloxanes on the hydrolytic stability of their Si–O–Ti bonds apart from the hydrolytic conditions (amount of water, Si, Ti and H+ concentration). The hydrolytic stability of the titanodiphenylsiloxanes AE decreases in the order cyclotetramer (E)>spirocyclo (A, B)>bicyclo (C, D). Reasons for the different hydrolytic stability are discussed. The results on the different hydrolytic stabilities of Si–O–Ti bonds can contribute to a better understanding of the synthesis of homogeneous heterometal materials on a molecular scale via the sol–gel process.


References

  1. J. D. Mackenzie and D. R. Ulrich, Ultrastructure Processing of Advanced Materials, J. Wiley, New York, 1988 Search PubMed.
  2. I. M. Thomas, in Sol–Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, ed. L. C. Klein, Noyes Publications, Park Ridge, NJ, 1988 Search PubMed.
  3. R. C. Mehrotra, Chemistry, Spectroscopy and Application of Sol–Gel Glasses, ed. R. Reisfeld and C. K. Jorgensen, Springer Verlag, Berlin, Heidelberg, 1992 Search PubMed.
  4. H. Schmidt, J. Non-Cryst. Solids, 1988, 100, 51 CAS.
  5. C. J. Brinker and C. W. Scherer, Sol–Gel Science, Academic Press, New York, 1990 Search PubMed.
  6. T. Nishide, F. Mizukami and H. Yamaguchi, J. Sol–Gel Sci. Technol., 1994, 1, 113 Search PubMed.
  7. A. Kasgöz, K. Yoshimura, T. Misono and Y. Abe, J. Sol–Gel Sci. Technol., 1994, 1, 185 Search PubMed.
  8. H. Schmidt and B. Seiferling, Mater. Res. Soc. Symp. Proc., 1986, 73, 739 CAS.
  9. J. Jonas, A. D. Irwin and J. S. Holmgren, in Ultrastructure Processing of Advanced Materials, ed. D. R. Uhlmann and D. R. Ulrich, J. Wiley, 1992, pp. 303–314 Search PubMed.
  10. C. L. Schutte, J. R. Fox, R. D. Boyer and D. R. Uhlmann, in Ultrastructure Processing of Advanced Materials, ed. D. R. Uhlmann and D. R. Ulrich, J. Wiley, 1992, pp. 95–102 Search PubMed.
  11. F. Babonneau, Mater. Res. Soc. Symp. Proc., 1994, 346, 949 CAS.
  12. F. Babonneau, J. Maquet, and J. Livage, Proc. Int. Symp. Sol–Gel Sci. Technol., Los Angeles, 1994 Search PubMed.
  13. D. Hoebbel, T. Reinert and H. Schmidt, J. Sol–Gel Sci. Technol., 1996, 6, 139 Search PubMed.
  14. D. Hoebbel, T. Reinert and H. Schmidt, Mater. Res. Soc. Symp. Proc. Ser., 1996, 435, 461 Search PubMed.
  15. K. A. Andrianov, N. A. Kurasheva and L. I. Kuteinikova, Izv. Akad. Nauk SSSR, Ser. Khim., 1977, 10, 2314 Search PubMed.
  16. K. A. Andrianov, N. A. Kurasheva and L. I. Kuteinikova, Zh. Obshch. Khim., 1976, 46, 1533 CAS.
  17. V. A. Zeitler and C. A. Brown, J. Am. Chem. Soc., 1957, 79, 4618 CrossRef CAS.
  18. D. Hoebbel, T. Reinert and H. Schmidt, J. Sol–Gel Sci. Technol., 1996, 7, 217 Search PubMed.
  19. M. B. Hursthouse and M. A. Hossain, Polyhedron, 1984, 3, 95 CrossRef CAS.
  20. D. Smith, C. N. Caughlan and J. A. Campbell, Inorg. Chem., 1972, 11, 2989 CrossRef CAS.
  21. P. Toledano, M. In and C. Sanchez, C. R. Acad. Sci. Paris, 1991, 313, 1247 Search PubMed.
  22. M. Veith, M. Jarczyk and V. Huch, Angew. Chem., Int. Ed. Engl., 1997, 36, 117 CrossRef CAS.
  23. N. M. Rutherford, Ph. D. Thesis, University of California, 1987.
  24. V. W. Day, T. A. Eberspacher, W. G. Klemperer, C. W. Park and F. S. Rosenberg, J. Am. Chem. Soc., 1991, 113, 8190 CrossRef CAS.
  25. V. A. Zeitler and C. A. Brown, J. Phys. Chem., 1957, 61, 1174 CrossRef CAS.
  26. M. Aizawa, Y. Nosaka and N. Fujii, J. Non-Cryst. Solids, 1991, 128, 77 CrossRef CAS.
  27. D. Hoebbel, T. Reinert, H. Schmidt and E. Arpac, J. Sol–Gel Sci. Technol., 1997, 10, 115 Search PubMed.
  28. W. Noll, Chemie und Technologie der Silicone, Verlag Chemie, Weinheim, 1968 Search PubMed.
  29. G. M. Sheldrick, Programs for Crystal Structure Determination, SHELXS and SHELXL, University of Göttingen.
Click here to see how this site uses Cookies. View our privacy policy here.