Direction of Ring Opening of Styrene Oxide and Butadiene Monoxide by Ester Carbanions†

(Note: The full text of this document is currently only available in the PDF Version )

Stefan T. Orszulik and Maurice Porter


Abstract

Attack takes place at both primary and secondary epoxy carbons of styrene oxide and butadiene monoxide on reaction with ester carbanions, providing evidence for the conjugative effect in these systems.


References

  1. R. E. Parker and N. S. Isaacs, Chem. Rev., 1959, 59, 737 CrossRef CAS.
  2. J. G. Buchanan and H. Z. Sable, in Selective Organic Transformations, ed. B. S. Thyagarajan, Interscience, New York, 1972, vol. 2, p. 1 Search PubMed.
  3. R. R. Russell and C. A. VanderWerf, J. Am. Chem. Soc., 1947, 69, 11 CrossRef CAS.
  4. G. Van Zyl and E. E. van Tamelen, J. Am. Chem. Soc., 1950, 72, 1357 CrossRef CAS.
  5. C. K. Ingold, in Structure and Mechanism in Organic Chemistry, Cornell University Press, 1953, p. 342 Search PubMed.
  6. A. Rosowsky, in Heterocyclic Compounds with Three- and Four-membered Rings, Part 1, ed. A. Weissberger, Interscience, New York, 1964, ch. 1 Search PubMed.
  7. E. L. Eliel, in Steric Effects in Organic Chemistry, ed. M. S. Newman, Wiley, New York, 1956, pp. 106–114 Search PubMed.
  8. C. H. DePuy, F. W. Breitbeil and K. L. Eilers, J. Org. Chem., 1964, 29, 2810.
  9. P. M. G. Bavin, D. P. Hansell and R. G. W. Spickett, J. Chem. Soc., 1964, 4535 RSC.
  10. S. A. M. Tayyeb Hussain, W. D. Ollis, C. Smith and J. F. Stoddart, J. Chem. Soc., Perkin Trans. 1, 1975, 1480 RSC.
  11. A. I. Hashem and M. E. Shaban, Indian J. Chem., Sect. B, 1981, 20, 807.
  12. T. Jakobiec, Diss. Pharm. Pharmacol., 1971, 23(4), 401 Search PubMed.
  13. G. D. Zuidema, P. L. Cook and G. Van Zyl, J. Am. Chem. Soc., 1953, 75, 294 CrossRef CAS.
  14. 10i: 2.4 (2 H, m, H2); 2.4–1.9 (2 H, m, H3); 4.82 (1 H, m, H4); 5.1–5.5 (2 H, m, vinyl CH2); 5.7–6.1 (1 H, m, vinyl CH). 11i: 2.4 (2 H, m, H2); 3.2 (1 H, sextuplet, H3); 3.92–4.36 (2 H, dq, H4); 5.1–5.3 (2 H, m, vinyl CH2); 5.6–6.1 (1 H, dq, vinyl CH).
  15. 8e: 7.3 (5 H, C6H5): 5.85 (0.22 H, PhCH–O); 5.6 (0.55 H); 4.35 (0.9 H); 2.2–3.2 (2, 5 H). 9e: 7.3 (5 H, C6H5); 4–5 (3 H, m).
  16. R. M. Adams and C. A. VanderWerf, J. Am. Chem. Soc., 1950, 72, 4368 CrossRef CAS.
  17. 8e: mp 131.4–132.5 °C (113–115,11 diastereoisomers 93–94 and 133–134 °C13). 9e: mp 93.4–94.0 °C (93–95,12 126–128 °C11). 10h: mp (45–46,11 37–38,8 36–37 °C9). 11h: mp (37–38,11 45–46,8 49–50,12 47–48 °C9).
  18. 8f: 5.6–6.0 (CH[double bond, length as m-dash]CH2); 5.2–5.5 (CH[double bond, length as m-dash]CH2); 4.8–5.0 (CH–O); 3.5–4.0 (CHCN); 2.0–3.0 (CH2). 9f: 5.0–6.0 (CH1[double bond, length as m-dash]CH2); 3.5–4.5 (CHCN and CH2–;O); 3.0–4.0 (CHCH2).
  19. 12: 5.5–6.0 (dd, J3α–4,3β–4, 5.4, 10.9 PhCH); 4.2–4.6 (dd, J3α–2,3β–2, 8.3, 12.0, CNCH, D2O exchangeable); 3.1–3.5 (m, H); 2.5–3.0 (m, H). 13: 5.8–6.0 (dd, J3α–4,3β–4, 8.0, 7.0, PhCH); 4.2–4.4 (dd, J3α–2,3β–2, 9.0, 10.0, CNCH). Assignments confirmed by decoupling experiments.
Click here to see how this site uses Cookies. View our privacy policy here.