High resolution inductively coupled plasma mass spectrometry for the trace determination of plutonium isotopes and isotope ratios in environmental samples

(Note: The full text of this document is currently only available in the PDF Version )

Stefan Stürup, Henning Dahlgaard and Steffen Chen Nielsen


Abstract

A high resolution inductively coupled plasma mass spectrometric (HR-ICP-MS) method for the determination of plutonium isotopes and the 240Pu/239Pu isotope ratio utilising ultrasonic nebulisation was developed. Total plutonium concentrations (239+240Pu) measured in environmental samples by this HR-ICP-MS method were in good agreement with data obtained from α-spectrometry. Quantification was performed by both external calibration and isotope dilution and the best agreement was found by applying isotope dilution. Detection limits of 5, 1 and 1 fg ml–1 were found for 239Pu, 240Pu and 242Pu, respectively. These represent total amounts of 50, 10 and 10 fg or 0.1, 0.08 and 0.002 mBq of the three isotopes in a 10 ml sample volume. The precision (RSD) on the measurement of the 240Pu/239Pu ratio in environmental samples was approximately 2%, which is close to the theoretical precision (Poisson statistics). The influence of dwell time, number of sweeps and sample uptake rate on the measurement precision of the 240Pu/239Pu isotope ratio was investigated and the parameters were optimised using a 23 experimental design (a central composite design followed by a ridge analysis). The accuracy of the isotope ratio measurement was evaluated by comparing results from this HR-ICP-MS method with results from high resolution α-spectrometry and spectral deconvolution. Good agreement was found between the two techniques.


References

  1. P. I. Mitchell, L. Leon Vintro, H. Dahlgaard, C. Gasco and J. A. Sanchez-Cabeza, Sci. Total Environ., 1997, 202, 147 CrossRef CAS.
  2. N. Erdmann, G. Herrmann, G. Huber, S. Köhler, J. V. Kratz, A. Mansel, M. Nunnemann, G. Passler, N. Trautmann and A. Turchin, Fresenius' J. Anal. Chem., 1997, 359, 378 CrossRef CAS.
  3. M. Rodriguez, J. L. Gascon and J. A. Suarez, Talanta, 1997, 45, 181 CrossRef CAS.
  4. C. Gasco, M. P. Anton, A. Espinosa, A. Aragon, A. Alvarez, N. Navarro and E. Garcia-Torano, J. Radioanal. Nucl. Chem., 1997, 222, 81 CAS.
  5. N. Momoshima, H. Kakiuchi, Y. Maeda, E. Hirai and T. Ono, J. Radioanal. Nucl. Chem., 1997, 221, 213 CAS.
  6. P. J. Kershaw, K. E. Sampson, W. McCarthy and R. D. Scott, J. Radioanal. Nucl. Chem., 1995, 198, 113 CAS.
  7. J. J. Stoffel, J. F. Wacker, J. M. Kelly, L. A. Bond, R. A. Kiddy and F. P. Brauer, Appl. Spectrosc., 1994, 48, 1326 CAS.
  8. S. K. Aggarwal, S. Kumar, M. K. Saxena, P. M. Shah and H. C. Jain, Int. J. Mass Spectrom Ion Processes, 1995, 151, 127 CrossRef CAS.
  9. K. L. Ramakumar, S. Jeyakumar, R. M. Rao, L. Gnanayyan and H. C. Jain, J. Radioanal. Nucl. Chem., 1995, 190, 121 CAS.
  10. C. Kim, Y. Oura, Y. Takaku, H. Nitta, Y. Igarashi and N. Ikeda, J. Radioanal. Nucl. Chem., 1989, 136, 353 CAS.
  11. R. Chiappini, J. Taillade and S. Brebion, J. Anal. At. Spectrom., 1996, 11, 497 RSC.
  12. C.-K. Kim, R. Seki, S. Morita, S.-I. Yamasaki, A. Tsumura, Y. Takadu, Y. Igarashi and M. Yamamoto, J. Anal. At. Spectrom., 1991, 6, 205 RSC.
  13. N. A. Talvitie, Anal. Chem., 1971, 43, 1827 CrossRef CAS.
  14. C. Quingjiang, A. Aarkrog, S. P. Nielsen, H. Dahlgaard, H. Nies, Y. Yu and K. Mandrup, J. Radioanal. Nucl. Chem., 1993, 172, 281 CAS.
  15. S. Stürup, M. Hansen and C. Mølgaard, J. Anal. At. Spectrom., 1997, 12, 919 RSC.
  16. S. Stürup, unpublished data.
  17. G. P. I. Russ and J. M. Bazan, Spectrochim. Acta, Part B, 1987, 42, 49 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.