The effect of nitric acid concentration and nebulizer gas flow rates on aerosol properties and transport rates in inductively coupled plasma sample introduction

(Note: The full text of this document is currently only available in the PDF Version )

Ian I. Stewart and John W. Olesik


Abstract

An investigation of the influence of nitric acid on the aerosol generation and transport processes for an inductively coupled plasma (ICP) sample introduction system consisting of a cross-flow nebulizer and a Scott-type double pass spray chamber is described. Two important results are presented. (1) Aerosol and analyte transport rates decrease similarly when the nitric acid concentration is increased from 0 to 25% (v/v). This suggests that changes in analyte transport rates are due mainly to changes in aerosol transport through the spray chamber rather than changes in the relative analyte concentration in the tertiary aerosol compared with the bulk sample solution. (2) The relative decrease in transport rates as the nitric acid concentration is increased from 0 to 25% (v/v) is dependent on nebulizer gas flow rate. At low nebulizer gas flow rates, there is a dramatic decrease in the analyte and aerosol transport rates for a change from 0 to 2% (v/v) nitric acid and then little change as the nitric acid concentration is increased to 25% (v/v). At high nebulizer gas flow rates, there is a continuous decrease in the analyte and aerosol transport rates as the nitric acid concentration is increased from 0 to 25%. The nebulizer gas flow rate affects the ‘robustness’ of ICP-OES or ICP-MS signals to changes in acid concentration both through plasma condition ‘robustness’ and the susceptibility of the aerosol transport rate to variation in acid concentration. Changes in tertiary aerosol properties are more dramatically affected by changes in acid concentration than primary aerosol properties. Acid-dependent changes in the analyte and aerosol transport rates are likely most affected by changes in liquid aerosol density and evaporation rates. Evaporation is most efficient for 0% HNO3 solutions and least efficient from 25% HNO3 solutions and contributes to changes in the relative liquid density of aerosols. From the data described here, the acid-dependent changes in aerosol properties appear to occur predominantly during the transport of aerosol through the spray chamber. Similar effects should occur with other solutions (e.g. 5% w/w NaCl) whose density and water vapour pressure change significantly with concentration.


References

  1. M. Greenfield, H. McGeachin and P. B. Smith, Anal. Chim. Acta, 1976, 84, 67 CrossRef CAS.
  2. R. L. Dahlquist and J. W. Knoll, Appl. Spectrosc., 1978, 32, 1 CAS.
  3. F. J. M. J. Maessen, J. Balke and J. L. M. De Boer, Spectrochim. Acta, Part B, 1982, 37, 517 CrossRef.
  4. M. A. E. Wandt, M. A. B. Pougnet and A. L. Rodgers, Analyst, 1984, 109, 1071 RSC.
  5. A. Delijska and M. Vouchkov, Fresenius' Z. Anal. Chem., 1985, 321, 448 CrossRef.
  6. S. S. Que Hee, T. J. MacDonald and J. R. Boyle, Anal. Chem., 1985, 57, 1242 CrossRef CAS.
  7. R. I. Botto, Spectrochim. Acta, Part B, 1985, 40, 397 CrossRef.
  8. R. M. Belchamber, D. Betteridge, A. P. Wade, A. J. Cruickshank and P. Davidson, Spectrochim. Acta, Part B, 1986, 41, 503 CrossRef.
  9. C. J. Pickford and R. M. Brown, Spectrochim. Acta, Part B, 1986, 41, 183 CrossRef.
  10. J. Farino, J. R. Miller, D. D. Smith and R. F. Browner, Anal. Chem., 1987, 59, 2303 CrossRef CAS.
  11. E. G. Chudinov, I. I. Osroukhova and G. V. Varvanina, Fresenius' Z. Anal. Chem., 1989, 335, 25 CrossRef CAS.
  12. H. P. Longerich, J. Anal. At. Spectrom., 1989, 4, 665 RSC.
  13. E. Yoshimura, H. Suzuki, S. Yamazaki and S. Toda, Analyst, 1990, 115, 167 RSC.
  14. M. Marichy, M. Mermet and J. M. Mermet, Spectrochim. Acta, Part B, 1990, 45, 1195 CrossRef.
  15. J. C. Ivaldi, J. Vollmer and W. Slavin, Spectrochim. Acta, Part B, 1991, 46, 1063 CrossRef.
  16. A. Fernández, M. Murillo, N. Carrión and J.-M. Mermet, J. Anal. At. Spectrom., 1994, 9, 217 RSC.
  17. A. Canals, V. Hernandis, J. L. Todoli and R. F. Browner, Spectrochim. Acta, Part B, 1995, 50, 305 CrossRef.
  18. M. Carré, K. Lebas, M. Marichy, M. Mermet, E. Poussel and J. M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 271 CrossRef.
  19. I. B. Brenner, J. M. Mermet, I. Segal and G. L. Long, Spectrochim. Acta, Part B, 1995, 50, 323 CrossRef.
  20. I. B. Brenner, I. Segal, M. Mermet and J. M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 333 CrossRef.
  21. B. A. Zarcinas, M. J. McLaughlin and M. K. Smart, Commun. Soil Sci. Plant Anal., 1996, 27, 1331 Search PubMed.
  22. I. I. Stewart and J. W. Olesik, J. Anal. At. Spectrom., 1998, 13, 843 RSC.
  23. J. C. Fister, III and J. W. Olesik, Spectrochim. Acta, Part B, 1991, 46, 869 CrossRef.
  24. S. E. Hobbs and J. W. Olesik, Spectrochim. Acta, Part B, 1993, 48, 817 CrossRef.
  25. J. M. Mermet, Anal. Chim. Acta, 1991, 250, 85 CrossRef CAS.
  26. M. T. Cicerone and P. B. Farnsworth, Spectrochim. Acta, Part B, 1989, 44, 583 CrossRef.
  27. R. M. Barnes and J. L. Genna, Spectrochim. Acta, Part B, 1981, 36, 299 CrossRef.
  28. J.-M. Mermet, J. Anal. At. Spectrom., 1998, 13, 419 RSC.
  29. I. I. Stewart and J. W. Olesik, J. Anal. At. Spectrom., submitted for publication Search PubMed.
  30. W. D. Bachalo and M. J. Houser, Opt. Eng., 1984, 23, 583.
  31. D. D. Smith and R. F. Browner, Anal. Chem., 1982, 54, 533 CrossRef CAS.
  32. L. C. Bates, PhD Thesis, The University of North Carolina, 1991.
  33. J. W. Olesik, J. A. Kinzer and B. Harkleroad, Anal. Chem., 1994, 66, 2022 CrossRef CAS.
  34. J. W. Olesik and L. C. Bates, Spectrochim. Acta, Part B, 1995, 50, 285 CrossRef.
  35. M. Carré, E. Poussel and J.-M. Mermet, J. Anal. At. Spectrom., 1992, 7, 791 RSC.
  36. J. C. Ivaldi and J. F. Tyson, Spectrochim. Acta, Part B, 1995, 50, 2107 CrossRef.
  37. J. L. Todoli, J.-M. Mermet, A. Canals and V. Hernandis, J. Anal. At. Spectrom., 1998, 13, 55 RSC.
  38. Perry's Chemical Engineers' Handbook, ed. R. H. Perry, D. H. Green and J. O. Maloney, McGraw-Hill, New York, 6th edn., 1984 Search PubMed.
  39. W. Thomson, Phil. Mag., 1871, 42, 448 Search PubMed.
  40. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, FL, 72nd edn., 1991/92 Search PubMed.
  41. B. L. Sharp, J. Anal. At. Spectrom., 1988, 3, 939 RSC.
  42. N. A. Fuchs, The Mechanics of Aerosols, Dover Publications, New York, 1989 Search PubMed.
  43. D. H. Tracy, S. A. Myers and B. G. Balistee, Spectrochim. Acta, Part B, 1982, 37, 739 CrossRef.
  44. J. W. Olesik and J. A. Hartshorne, unpublished work.
  45. M. S. Cresser and R. F. Browner, Spectrochim. Acta, Part B, 1980, 35, 73 CrossRef.
  46. C. Dubuisson, E. Poussel, J. L. Toldoli and J. M. Mermet, Spectrochim. Acta, Part B, 1998, 53, 593 CrossRef.
  47. J.-L. Todolí and J.-M. Mermet, J. Anal. At. Spectrom., 1998, 13, 727 RSC.
  48. A. C. Lazar and P. B. Farnsworth, Appl. Spectrom., 1997, 51, 617 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.