Improved lead isotope ratio measurements in environmental and biological samples with a double focussing magnetic sector inductively coupled plasma mass spectrometer (ICP-MS)

(Note: The full text of this document is currently only available in the PDF Version )

R. Gwiazda, D. Woolard and D. Smith


Abstract

A method to measure lead (Pb) isotope ratios in biological and environmental samples using a single collector double focussing magnetic sector inductively coupled plasma mass spectrometer (ICP-MS) is presented. This method is intercalibrated with multicollector thermal ionization mass spectrometry (TIMS) to assess the suitability of the ICP-MS method for accurately and precisely identifying sources of environmental Pb exposure to humans. Results indicate that the external measurement precision (reproducibility) of this method, as evaluated by repeated analyses of the Pb isotope standard NBS 981 over the course of a year, was <0.1% (1&sigma;) for 206Pb:204Pb, 207Pb:206Pb and 208Pb:206Pb ratios. Accuracy of isotope ratio measurements by ICP-MS was evaluated by comparing analyses of whole blood (biological) and household dust (environmental) samples with the definitive TIMS analyses of the same samples. For whole blood and dust samples, the 206Pb:204Pb, 207Pb:206Pb and 208Pb:206Pb ratios measured by ICP-MS and TIMS generally agreed to within twice the propagated standard deviation (2&sigma;, &sigma;=√&sigma;TIMS2+&sigma;ICP-MS2)of both methods. However, a small but systematic difference between the Pb isotope ratios of blood measured with the two methods was apparent. The source of this difference remains under investigation. These data demonstrate that this ICP-MS method provides improved accuracy and precision of lead isotope ratio measurements compared to previous ICP-MS methods, and is suitable for use in studies to evaluate sources of environmental Pb exposure to children. Further, the increased samplethroughput and reduced cost of analyses using this method are substantial advantages over the more time-consuming and expensive TIMS method. Consequently, this Pb isotope methodology should prove useful as a routine tool in the investigation and mitigation of Pb exposure associated hazards.


References

  1. M. Duggan and M. Inskip, Public Health Rev., 1985, 13, 11 Search PubMed.
  2. M. Weitzman, A. Aschengrau, D. Bellinger, R. Jones, J. S. Hamlin and A. Beiser, J. Am. Med. Assoc., 1993, 269, 1647 Search PubMed.
  3. A. Aschengrau, A. Beiser, D. Bellinger, D. Copenhafer and M. Weitzman, Environ. Res., 1994, 67, 125 CrossRef CAS.
  4. M. Farfel and J. Chisolm, Am. J. Public Health, 1990, 80, 1240 Search PubMed.
  5. Y. Amitai, M. Brown, J. Graef and E. Cosgrove, Pediatrics, 1991, 88, 893 Search PubMed.
  6. D. R. Smith, J. D. Osterloh and A. R. Flegal, Environ. Health Perspect., 1996, 104, 60 CAS.
  7. A. R. Flegal and D. R. Smith, Rev. Environ. Contam. Toxicol., 1995, 143, 1 Search PubMed.
  8. Y. Yaffe, C. P. Flessel, J. J. Wesolowski, A. Del Rosario, G. N. Guirguis, V. Matias, J. W. Gramlich, W. R. Kelly, T. E. Degarmo and G. C. Coleman, Arch. Environ. Health, 1983, 38(4), 237 Search PubMed.
  9. M. B. Rabinowitz, Biol. Trace Elem. Res., 1987, 12, 223 Search PubMed.
  10. C. R. Angle, W. I. Manton and K. L. Stanek, Clin. Toxicol., 1995, 33, 657 Search PubMed.
  11. D. R. Smith, J. Osterloh, S. Niemeyer and A. R. Flegal, Environ. Res., 1992, 57, 190 CAS.
  12. A. R. Date and Y. Y. Chueng, Analyst, 1987, 112, 1531 RSC.
  13. H. T. Delves and M. J. Campbell, J. Anal. At. Spectrom., 1988, 3, 343 RSC.
  14. E. Caplun, D. Pettit and E. Picciotto, Endeavor, 1984, 8, 135 Search PubMed.
  15. H. P. Longerich, B. J. Fryer and D. F. Strong, Spectrochim. Acta, Part B, 1987, 42, 39 CrossRef.
  16. W. T. Sturges and L. A. Barrie, Nature, 1987, 329, 144 CrossRef CAS.
  17. J. R. Dean, L. Ebdon and R. Massey, J. Anal. At. Spectrom., 1987, 2, 369 RSC.
  18. A. R. Flegal and D. R. Smith, Environ. Res., 1992, 58, 125 CAS.
  19. D. Woolard, R. Franks and D. R. Smith, J. Anal. At. Spectrom., 1998, 13, 1015 RSC.
  20. F. Vanhaecke, L. Moens, R. Dams and P. Taylor, Anal. Chem., 1996, 68, 567 CrossRef CAS.
  21. F. Vanhaecke, L. Moens, R. Dams, I. Papadakis and P. Taylor, Anal. Chem., 1997, 69, 567 CrossRef CAS.
  22. A. J. Walder, D. Koller, N. M. Reed, R. C. Hutton and P. A. Freedman, J. Anal. At. Spectrom., 1993, 8, 1037 RSC.
  23. J. Yoshinaga, Tohoku J. Exp. Med., 1996, 178, 37 Search PubMed.
  24. M. J. Campbell and H. T. Delves, J. Anal. At. Spectrom., 1989, 4, 235 RSC.
  25. L. Halicz, Y. Erel and A. Veron, At. Spectrosc., 1996, 17, 186.
  26. S. Augagneur, B. Medina and F. Grousset, Fresenius' Z. Anal. Chem., 1997, 357, 1149 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.