Determination of samarium by the use of 2-color 3-photon resonance ionization mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Kyuseok Song, Hyungki Cha and Jongmin Lee


Abstract

Resonance ionization mass spectrometry (RIMS) been applied for the investigation of states of the samarium atom. The 1-color and 2-color RIMS have been used obtain optimal photoionization schemes and to determine the Sm content of standard solutions. For 1-color 3-photon ionization schemes maximum intensity of ion signal is observed at 577.86 nm. When 2-color 3-photon ionization is adopted for the ion detection, however, a level located at 17 831 cm–1( 7F3) from the 7F2 state (812 cm–1) is regarded as the most efficient first excited state for ionization. Among the 2-color schemes using a level 17 831 cm–1 as the first excited state, a level located at 34 460.4 cm–1 is regarded as the efficient excited state for the detection sensitivity. Based on this optimal scheme determination of Sm contents in concentrations of standard solutions is performed. The minimum amount of Sm which can be detected by 2-color photoionization scheme {4f66s27F2 (812 cm–1)→4f66s6p7F3° (17 831 cm–1)→34 460.4 cm–1 →continuum} is estimated as 200 fg.


References

  1. V. I. Mishin, S. K. Sekatskii, V. N. Fedoseev, N. B. Buyanov and V. S. Letokhov, Optics Commun., 1987, 62, 383 CrossRef.
  2. V. S. Letokhov, Laser Photoionization Spectroscopy, Academic Press Inc., New York, USA, 1987 Search PubMed.
  3. K. Song, J. H. Yi and J. Lee, J. Kor. Chem. Soc., 1992, 36, 832 Search PubMed.
  4. M. H. Ervin, M. C. Wood and N. Winograd, Anal. Chem., 1993, 65, 417 CrossRef CAS.
  5. R. C. Estler and N. S. Nogar, Spectrochim. Acta, Part B, 1993, 48, 663 CrossRef.
  6. G. S. Hurst and M. G. Payne, Spectrochim. Acta, Part B, 1988, 41, 713 CrossRef.
  7. R. C. Estler and N. S. Nogar, Spectrochim. Acta, Part B, 1993, 48, 663 CrossRef.
  8. G. I. Bekov, V. N. Radayev and V. S. Letokhov, Spectrochim. Acta, Part B, 1988, 43, 491 CrossRef.
  9. E. B. Saloman, Spectrochim. Acta, Part B, 1990, 45, 37 CrossRef.
  10. E. B. Saloman, Spectrochim. Acta, Part B, 1991, 46, 319 CrossRef.
  11. E. B. Saloman, Spectrochim. Acta, Part B, 1992, 47, 543 CrossRef.
  12. E. B. Saloman, Spectrochim. Acta, Part B, 1993, 48, 1130 CrossRef.
  13. W. F. Megger, C. H. Corliss and B. F. Scribner, Tables of Spectral Line Intensities. Part 1. Arranged by Elements, National Bureau of Standards, Washington, DC, USA, 2nd edn., 1975 Search PubMed.
  14. C. H. Corliss and W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, Monograph 53, National Bureau of Standards, Washington, DC, USA, 1962 Search PubMed.
  15. W. C. Martin, R. Zalubas and L. Hagan, Atomic Energy Levels—The Rare Earth Elements, National Bureau of Standards, Washington, DC, USA, 1978 Search PubMed.
  16. A. C. Parr and M. Inghram, J. Opt. Soc. Am., 1975, 65, 613 Search PubMed.
  17. P. Brix and H. Kopfermann, Z. Phys., 1949, 126, 364.
  18. E. F. Worden, R. W. Solaz, J. A. Paisner and J. G. Conway, J. Opt. Soc. Am., 1978, 68, 52 Search PubMed.
  19. W. J. Childs, O. Poulsen and L. S. Goodman, Phys. Rev. A, 1979, 19, 160 CrossRef CAS.
  20. H. Nottbeck Brand, H. H. Schulz and A. Steudel, J. Phys. B, At. Mol. Phys., 1978, 11, L99 CrossRef CAS.
  21. J. G. England, I. S. Grant, J. A. R. Griffith, D. E. Evans, G. W. A. Newton and P. M. Walker, J. Phys. G, Nucl. Phys., 1989, 15, 105.
  22. J. P. Young, R. W. Shaw and D. H. Smith, Appl. Spectrosc., 1989, 43, 1164 CAS.
  23. L. Jia, C. Jing, Z. Zhou and F. Lin, J. Opt. Soc. Am. B, 1993, 13, 1317.
  24. T. Jayasekharan, M. A. N. Razvi and G. L. Bahle, J. Opt. Soc. Am. B, 1996, 13, 641 CAS.
  25. K. Song, H. Cha, J. Lee and I. Kopakov, Microchem. J., 1997, 57, 265 CrossRef CAS.
  26. K. Song, H. Cha, J. Lee, J. Y. Park and Y. D. Huh, Bull. Kor. Chem. Soc., 1995, 16, 578.
Click here to see how this site uses Cookies. View our privacy policy here.