Interlaboratory comparison of mass spectrometric methods for lead isotopes and trace elements in NIST SRM 1400 Bone Ash

(Note: The full text of this document is currently only available in the PDF Version )

Thomas A. Hinners, Richard Hughes, Peter M. Outridge, William J. Davis, Klaus Simon and Douglas R. Woolard


Abstract

The results of an interlaboratory comparison are reported for the lead isotope composition and for trace element concentrations in NIST SRM 1400 Bone Ash obtained using quadrupole and magnetic-sector inductively coupled plasma mass spectrometry (ICP-MS) and (for the Pb isotopes only) thermal ionization mass spectrometry (TIMS). Concentrations of 42 analytes, in addition to the 17 listed by NIST, are presented, including the rare earth elements. Twenty-six of these analytes are considered to have been reliably determined based upon the agreement of two or more laboratories, or based upon data from a single laboratory with consideration of the potential interferences. Nickel and cobalt were reliably determined only by medium-resolution magnetic-sector ICP-MS, or by quadrupole ICP-MS following matrix separation with an ion-exchange column. The Pb isotope composition reported here from TIMS agrees within 0.09% relative with previously reported, non-certified values for this standard reference material. The atomic abundances of208Pb, 207Pb and 206Pb determined by ICP-MS are statistically equivalent to the best-estimate TIMS values or differ statistically by 0.17% at most. The information provided in this paper will enhance the utility of this reference material.


References

  1. D. R. Smith, S. Niemeyer, J. A. Estes and A. R. Flegal, Environ. Sci. Technol., 1990, 24, 1517 CAS.
  2. F. C. M. Driessens and R. M. H. Verbeeck, Biominerals, CRC Press, Boca Raton, FL, 1990 Search PubMed.
  3. Trace Metals and Fluoride in Bones and Teeth, ed. Priest, N. D., and Van De Vyyer, F. L., CRC Press, Boca Raton, FL, 1990 Search PubMed.
  4. L. M. W. Owen, H. M. Crews, R. C. Massey and N. J. Bishop, Analyst, 1995, 120, 705 RSC.
  5. A. Radunović, M. W. B. Bradbury and H. T. Delves, Analyst, 1993, 118, 533 RSC.
  6. M. A. Vaughan and G. Horlick, Appl. Spectrosc., 1986, 40, 434, 1986 CAS.
  7. L. Ebdon, A. S. Fischer, P. J. Worsfold, H. Crews and M. Baxter, J. Anal. At. Spectrom., 1993, 8, 691 RSC.
  8. K. J. Mulligan, T. M. Davidson and J. A. Caruso, J. Anal. At. Spectrom., 1990, 5, 301 RSC.
  9. W. Doherty and I. Girard, Geological Survey of Canada, personal communication.
  10. Elimination of Iron and Aluminium as Matrix Interferences for Determination of Transition Metals Using Chelation Ion Chromatography. Application Note 77, Dionex, Sunnyvale, CA, 1992 Search PubMed.
  11. R. R. Parrish, D. Bellerive and R. W. Sullivan, in Radiogenic Age and Isotopic Studies: Report 5, Geological Survey of Canada, Ottawa, 1987, Paper 91-2, pp. 187–190 Search PubMed.
  12. J. D. Woodhead, F. Volker and M. T. McCulloch, Analyst, 1995, 120, 35 RSC.
  13. W. J. Youden and E. H. Steiner, Statistical Manual of the Association of Official Analytical Chemists, AOAC, Arlington, VA, 1975, pp. 59 and 86 Search PubMed.
  14. J. Yoshinaga, Tohoku J. Exp. Med., 1996, 178, 37 Search PubMed.
  15. T. E. Gills, NIST, personal communication.
  16. Document No. 034254, Revision O2, Dionex, Sunnyvale, CA, 1994 Search PubMed.
  17. CRC Handbook of Chemistry and Physics, ed. Lide, D., CRC Press, Boca Raton, FL, 76th edn., 1995–96, p. 14-11 Search PubMed.
  18. N. Nakamura, Geochim. Cosmochim. Acta, 1974, 38, 757 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.