Titanium determination in human blood plasma by ICP-OES, longitudinally, and transversally heated Zeeman ETAAS

(Note: The full text of this document is currently only available in the PDF Version )

Thorsten J. Einhäuser, Thomas G. Pieper and Bernhard K. Keppler


Abstract

A method was developed to determine the amount of titanium in human blood plasma by inductively coupled plasma optical emission spectrometry (ICP-OES) and Zeeman electro-thermal atomic absorbance spectrometry (ETAAS) following dilution of the plasma samples. An echelle based ICP-OES system shows excellent results in the determination of titanium in blood plasma if a 1+99 dilution of the samples with water and an ultrasonic nebulizer is used. No matrix interference could be observed. Furthermore, a comparison of a longitudinally heated Zeeman ETAAS with a transversally heated instrument showed that with the transversally heated tube the typical peak tailing, evoked by titanium as a refractory element, can be minimized. Suitable results in the determination of titanium could be obtained with both AAS systems. However, the use of complex temperature–time programs is necessary. The transversally heated furnace suffers from memory effects of the plasma samples. As a result, the ICP-OES is better suited than the transversally heated Zeeman furnace technique, owing to lack of formation of carbides and less matrix effects.


References

  1. B. K. Keppler and M. E. Heim, Drugs Future, 1988, 13, 637 Search PubMed.
  2. M. E. Heim, H. Flechtner and B. K. Keppler, Prog. Clin. Biochem. Med., 1989, 10, 218 Search PubMed.
  3. Th. J. Einhäuser, PhD Thesis, Heidelberg, 1996.
  4. W. Li, Y. Xiao, S. Hu, H. Yu, H. Zeng and X. Hu, Fenxi Ceshi Tonghao, 1992, 11(6), 61 Search PubMed.
  5. M. Silva, M. Gallego and M. Varcarcel, Talanta, 1980, 27(7), 615 CrossRef CAS.
  6. M. A. Cejas, A. Gomez Henz and M. Varcarcel, Quim. Anal., 1984, 3(2), 164 Search PubMed.
  7. T. Kiriyama and R. Kuroda, Z. Anal. Chem., 1982, 313, 328 CAS.
  8. S. J. Lugowski, D. C. Smith, A. D. McHugh and F. C. Van Loon, J. Biomed. Mater. Res., 1991, 25(12), 1443 CAS.
  9. C. Feldman, Anal. Chem., 1974, 11, 1606 CrossRef.
  10. Th. J. Einhäuser and B. K. Keppler, ICP Inf. Newsl., 1995, 12, 855 Search PubMed.
  11. W. Slavin, D. C. Manning and G. R. Carnick, Anal. Chem., 1981, 53, 1504 CrossRef CAS.
  12. D. Beauchemin, J. C. Y. LeBlanc, G. R. Peters and A. T. Persaud, Anal. Chem., 1994, 66, 462R CAS.
  13. Th. J. Einhäuser, M. Galanski and B. K. Keppler, J. Anal. At. Spectrom., 1996, 11, 747 RSC.
  14. B. Welz, Nachr. Chem. Tech., 1980, 9, 161 Search PubMed.
  15. J. R. Garbarino and H. E. Taylor, Appl. Spectrosc., 1980, 5, 584.
  16. M. J. Powell and D. W. Boomer, The Spectroscopist, 1993, 1, 1 Search PubMed.
  17. H. J. Keller, B. K. Keppler, U. Krüger and R. Lindner, EP 0073502A1 (9.3.1983), Byk Gulden.
  18. F. Jauk and S. Spitzauer, Klinische Chemie, Urban & Schwarzenberg, München, 1989, p. 10 Search PubMed.
  19. J. Nölte, LaborPraxis, 1993, 6, 1 Search PubMed.
  20. DIN 32642 and DIN 38402, part 51, Beuth Verlag, Berlin, Germany.
  21. K. Slickers, Atomic-Emission Spectroscopy, Giessen, Germany, 1993410 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.