Transient acid effects in inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Ian I. Stewart and John W. Olesik


Abstract

A change in sample acid concentration affects both transient (over several minutes) and steady state ICP-OES and ICP-MS signal magnitudes. Steady state signals are depressed when the acid concentration is increased andvice versa. The transient effect appears as a signal ‘undershoot’ or ‘overshoot’ of up to 50% followed by a time dependent (5–25 min) ‘relaxation’ to the steady state signal. The magnitude of the transient acid effect depends on the type and concentration of acid. Time-resolved side-on (radial) ICP-OES, end-on (axial) ICP-OES, ICP-MS, aerosol size and transport rate measurements were made. Similar acid effects were observed in both ICP-OES and ICP-MS. Following a change in sample acid concentration, the tertiary aerosol volumetric flux changed on a similar time scale as ICP-OES and ICP-MS signals whereas the primary aerosol flux did not. It is proposed that the transient effect is due to changes in the extent of aerosol evaporation in the spray chamber, which in turn affects the analyte transport rate. There appears to be a competition between evaporation of solution on the walls of the spray chamber and evaporation of the sample aerosol. The relative rates of aerosol and solution evaporation depend on their acid concentrations. The water vapour pressure decreases as the acid concentration increases. Spray chambers conditioned with high acid concentrations will produce smaller amounts of water vapour from the solution on the spray chamber walls. When a low acid concentration sample is then sprayed into the spray chamber the aerosol evaporation will be more extensive. With time, however, the acid concentration of the solution coating the walls decreases owing to dilution by the aerosol of lower acid concentration. Then the extent of evaporation of newly introduced aerosol will decrease until a steady state is reached (i.e., the acid concentration of solution coating the walls equals the acid concentration in the aerosol). Transport rate measurements show an increase of 10% immediately after the sample is changed from a 25% to a 2% HNO3 matrix. Methods to minimize and potentially eliminate this effect are proposed.


References

  1. M. Greenfield, H. McGeachin and P. B. Smith, Anal. Chim. Acta, 1976, 84, 67 CrossRef CAS.
  2. R. L. Dahlquist and J. W. Knoll, Appl. Spectrosc., 1978, 32, 1 CAS.
  3. F. J. M. J. Maessen, J. Balke and J. L. M. De Boer, Spectrochim. Acta, Part B, 1982, 37, 517 CrossRef.
  4. M. A. E. Wandt, M. A. B. Pougnet and A. L. Rodgers, Analyst, 1984, 109, 1071 RSC.
  5. R. I. Botto, Spectrochim. Acta, Part B, 1985, 40, 397 CrossRef.
  6. A. Delijska and M. Vouchkov, Fresenius' Z., Anal. Chem., 1985, 321, 448 CrossRef.
  7. S. S. Que Hee, T. J. MacDonald and J. R. Boyle, Anal. Chem., 1985, 57, 242.
  8. R. M. Belchamber, D. Betteridge, A. P. Wade, A. J. Cruickshank and P. Davidson, Spectrochim. Acta, Part B, 1986, 41, 503 CrossRef.
  9. C. J. Pickford and R. M. Brown, Spectrochim. Acta, Part B, 1986, 41, 183 CrossRef.
  10. J. Farino, J. R. Miller, D. D. Smith and R. F. Browner, Anal. Chem., 1987, 59, 2303 CrossRef CAS.
  11. E. G. Chudinov, I. I. Osroukhova and G. V. Varvanina, Fresenius' Z. Anal. Chem., 1989, 335, 25 CrossRef CAS.
  12. E. Yoshimura, H. Suzuki, S. Yamazaki and S. Toda, Analyst, 1990, 115, 167 RSC.
  13. M. Marichy, M. Mermet and M. J. Mermet, Spectrochim. Acta, Part B, 1990, 45, 1195 CrossRef.
  14. J. C. Ivaldi, J. Vollmer and W. Slavin, Spectrochim. Acta, Part B, 1991, 46, 1063 CrossRef.
  15. A. Fernandez, M. Murillo, N. Carrion and J. M. Mermet, J. Anal. At. Spectrom., 1994, 9, 217 RSC.
  16. A. Canals, V. Hernandis, J. L. Todoli and R. F. Browner, Spectrochim. Acta, Part B, 1995, 50, 305 CrossRef.
  17. M. Carre, K. Lebas, M. Marichy, M. Mermet, E. Poussel and J. M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 271 CrossRef.
  18. I. B. Brenner, J. M. Mermet, I. Segal and G. L. Long, Spectrochim. Acta, Part B, 1995, 50, 323 CrossRef.
  19. I. B. Brenner, I. Segal, M. Mermet and J. M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 333 CrossRef.
  20. B. A. Zarcinas, M. J. McLaughlin and M. K. Smart, Commun. Soil Sci. Plant Anal., 1996, 27, 1331 Search PubMed.
  21. H. P. Longerich, J. Anal. At. Spectrom., 1989, 4, 665 RSC.
  22. I. I. Stewart and J. W. Olesik, J. Anal. At. Spectrom., submitted for publication Search PubMed.
  23. J. C. Ivaldi and W. Slavin, personal communications.
  24. W. D. Bachalo and M. J. Houser, Opt. Eng., 1984, 23, 583.
  25. CRC Handbook of Chemistry and Physics, ed. Lide, D. R., CRC Press, Boca Raton, FL, ( 1991–92).
  26. D. D. Smith and R. F. Browner, Anal. Chem., 1982, 54, 533 CrossRef CAS.
  27. L. C. Bates, PhD. Thesis, University of North Carolina, 1991.
  28. K. W. Olson, W. J. Haas, Jr. and V. A. Fassel, Anal Chem., 1977, 49, 632 CrossRef CAS.
  29. R. F. Browner, A. Canals and V. Hernandis, Spectrochim. Acta, Part B, 1992, 47, 659 CrossRef.
  30. D. H. Tracy, S. A. Myers and B. G. Balistee, Spectrochim. Acta, Part B, 1982, 37, 739 CrossRef.
  31. J. C. Ivaldi and J. F. Tyson, Spectrochim. Acta, Part B, 1995, 50, 1207 CrossRef.
  32. C. Dubuisson, E. Poussel and J. M. Mermet, J. Anal. At Spectrom., 1997, 12, 281 RSC.
  33. M. Carre, E. Poussel and J. M. Mermet, J. Anal. At. Spectrom., 1992, 7, 791 RSC.
  34. R. S. Houk and J. A. Olivares, Anal. Chem., 1986, 58, 20 CrossRef CAS.
  35. S. H. Tan and G. Horlick, J. Anal. At. Spectrom., 1987, 2, 745 RSC.
  36. D. Beauchemin, J. W. McLaren and S. S. Berman, Spectrochim. Acta, Part B, 1987, 42, 467 CrossRef.
  37. D. C. Gregoire, Spectrochim. Acta, Part B, 1987, 42, 895 CrossRef.
  38. J. J. Thompson and R. S. Houk, Appl. Spectrosc., 1987, 41, 801 CAS.
  39. Perry's Chemical Engineers' Handbook, ed. Green, D. W., McGraw-Hill, New York, 6th edn., 1984.
  40. W. Thomson, Philos. Mag., 1871, 42, 448 Search PubMed.
  41. J. B. French, B. Etkin and R. Jong, Anal. Chem., 1994, 66, 685 CrossRef CAS.
  42. K. E. Lawrence, G. W. Rice and V. A. Fassel, Anal. Chem., 1984, 56, 292 CrossRef.
  43. F. G. Smith, D. R. Widerin, R. S. Houk, C. B. Egan and R. E. Serfass, Anal. Chim. Acta, 1991, 248, 229 CrossRef CAS.
  44. J. A. McLean, H. Zhang and A. Montaser, Anal. Chem., 1998, 70, 1012 CrossRef CAS.
  45. Y. Q. Tang. and C. Trassy, Spectrochim. Acta, Part B, 1986, 41, 143 CrossRef.
  46. B. L. Caughlin and M. W. Blades, Spectrochim. Acta, Part B, 1987, 42, 353 CrossRef.
  47. S. E. Long and R. F. Browner, Spectrochim. Acta, Part B, 1988, 43, 1461 CrossRef.
  48. D. E. Nixon, J. Anal. At. Spectrom., 1990, 5, 531 RSC.
  49. I. I. Stewart, S. X. Rabb and J. W. Olesik, J. Anal. At. Spectrom., to be submitted Search PubMed.
  50. J.-L. Todoli, J. M. Mermet, A. Canals and V. Hernandis, J. Anal. At. Spectrom., 1998, 13, 55 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.