Determination of iron and nickel in electronic grade chlorine by sealed inductively coupled plasma atomic emission spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Reha K. Tepe, Tracey Jacksier and Ramon M. Barnes


Abstract

A sealed inductively coupled plasma was used to determine the concentration of Fe and Ni in electronic grade chlorine. Since the discharge was formed inside a quartz container, factors such as toxicity, corrosion and contamination were not of primary concern. The system was calibrated for iron using two different standard materials, a ferrocene permeation tube and iron pentacarbonyl in argon. Under flowing conditions the detection limits (3σb) were 290 and 20 pg ml–1 for iron pentacarbonyl and ferrocene, respectively. A nickelocene permeation tube was used for the determination of Ni that resulted in a detection limit (3σb) of 9 pg ml–1. Parameters that affect the signal intensity and reproducibility, such as forward power, wash-out time, flow rate and external cooling, were optimized.


References

  1. E. M. Kirschner, Chem. Eng. News, 1997, 75, 25 .
  2. K. L. Rubow, D. S. Prause and M. R. Eisenmann, in Proceedings of the 43rd Integrated Product Development, Contamination Control Conference, Los Angeles, CA, 1997, Institute of Environmental Sciences, Mount Prospect, IL, p. 13 Search PubMed .
  3. S. Silverman and P. Ballentine, in Proceedings of the 43rd Integrated Product Development, Contamination Control Conference, Los Angeles, CA, 1997, Institute of Environmental Sciences, Mount Prospect, IL, p. 200 Search PubMed .
  4. T. Hattori, Solid State Technol., 1990, 33, S1 CAS .
  5. W. Bergholz, G. Zoth, G. Gotz and A. Saliov, Solid State Phenom., 1991, 19, 109 Search PubMed .
  6. W. Kroll, Solid State Technol., 1984, 27, 220 CAS .
  7. D. M. Manos and D. L. Flamm, Plasma Etching, Academic Press, San Diego 1989p. 146 Search PubMed .
  8. S. K. Hughes and R. C. Fry, Anal. Chem., 1981, 53, 1111 CAS .
  9. B. Baaske, A. Golloch and U. Telgheder, J. Anal. At. Spectrom., 1994, 9, 867 RSC .
  10. V. A. Khvostikov, S. S. Grazhulene, A. Golloch, S. Kirschner and U. Telgheder, J. Anal. At. Spectrom., 1995, 10, 161 RSC .
  11. B. Baaske and U. Telgheder, J. Anal. At. Spectrom., 1995, 10, 1077 RSC .
  12. V. Khvostikos, S. Grazhulene, A. Golloch, U. Telgheder and H. Joosten, Spectrochim. Acta, Part B, 1997, 52, 1551 CrossRef .
  13. M. J. Jahl and R. M. Barnes, J. Anal. At. Spectrom., 1992, 7, 833 RSC .
  14. T. Jacksier and R. M. Barnes, J. Anal. At. Spectrom., 1992, 7, 839 RSC .
  15. M. J. Jahl and R. M. Barnes, Spectrochim. Acta, Part B, 1993, 47, 923 CrossRef .
  16. T. Jacksier and R. M. Barnes, J. Anal. At. Spectrom., 1994, 9, 1299 RSC .
  17. R. J. LewisSax's Dangerous Properties of Industrial Materials, 9th edn., VNR, New York, p. 1946 Search PubMed .
  18. A. A. Bol'shakov and R. M. Barnes, Spectrochim. Acta, Part B, 1997, 52, 2127 CrossRef .
  19. M. J. Jahl, PhD Dissertation, University of Massachusetts, Amherst, MA, 1992 Search PubMed .
  20. M. J. Jahl, T. Jacksier and R. M. Barnes, J. Anal. At. Spectrom., 1992, 7, 653 RSC .
  21. A. Gaillat, R. M. Barnes, P. Proulx and M. I. Boulos, J. Anal. At. Spectrom., 1995, 10, 941 RSC .
  22. T. Jacksier, PhD Dissertation, University of Massachusetts, Amherst, MA, 1992 Search PubMed .
  23. P. Y. Yang and R. M. Barnes, Spectrochim. Acta, Part B, 1989, 44, 1093 CrossRef .
Click here to see how this site uses Cookies. View our privacy policy here.