Electrolytic corrosion of a stainless-steel electrospray emitter monitored using an electrospray–photodiode array system

(Note: The full text of this document is currently only available in the PDF Version )

Gary J. Van Berkel


Abstract

An electrospray–photodiode array (ES-PDA) system provides a useful alternative to ES-MS for the study of the electrolytic reactions that occur at the point of high voltage (or ground) contact in an ES ion source emitter. These electrolytic reactions charge-balance the loss of an excess of ions of one polarity in the charged ES droplets. This ES-PDA approach is particularly useful when the redox products are either neutral or difficult to detect in the gas phase unaltered. The latter is the case for the multiply charged metal ions derived from ES emitter corrosion. In this study, the anodic corrosion of iron in a stainless-steel ES emitter, detected optically as tris(1,10-phenanthroline)iron(II), [Fe(phen)3 ]2+ , was found using the ES-PDA system to account for the majority of the charge-balancing current under the conditions used. The metal ions derived from emitter corrosion may be produced at levels sufficient to cause chemical background problems in ES-MS. Probably because of the relatively high concentration detection limits of ES-MS for multiply charged inorganic species, this problem has not yet been a major issue. One expects further use of ES as a nebulization source for ICP-AES and ICP-MS, because of the much better concentration detection limits of these techniques, to bring this issue to the forefront.


References

  1. G. J. Van Berkel, in Electrospray Ionization Mass Spectrometry, ed. Cole, R. B., John Wiley, New York, 1997, ch. 2 Search PubMed.
  2. G. J. Van Berkel and F. Zhou, Anal. Chem., 1995, 67, 2916 CrossRef.
  3. A. T. Blades, M. G. Ikonomou and P. Kebarle, Anal. Chem., 1991, 63, 2109 CrossRef CAS.
  4. G. J. Van Berkel and F. Zhou, Anal. Chem., 1995, 67, 3958 CrossRef CAS.
  5. G. J. Van Berkel and F. Zhou, J. Am. Soc. Mass Spectrom., 1996, 7, 157 CrossRef CAS.
  6. G. J. Van Berkel, F. Zhou and J. T. Aronson, Int. J. Mass Spectrom. Ion Processes, 1997, 162, 55 CrossRef CAS.
  7. A. T. Blades, P. Jayaweera, M. G. Ikonomou and P. Kebarle, Int. J. Mass Spectrom. Ion Processes, 1990, 101, 325 CrossRef CAS.
  8. G. R. Agnes, I. I. Stewart and G. Horlick, Appl. Spectrosc., 1994, 48, 1347 CAS.
  9. A. A. Schilt, Analytical Applications of 1,10-Phenanthroline and Related Compounds, Pergamon Press, London, 1969 Search PubMed.
  10. Z. Marczenko, Spectrophotometric Determination of Elements, Ellis Horwood, Chichester, 1976 Search PubMed.
  11. CRC Handbook of Organic Analytical Reagents, ed. Cheng, K. L., Ueno, K., and Imamura, T., CRC Press, Boca Raton, FL, 1982 Search PubMed.
  12. Corrosion Mechanisms in Theory and Practice, ed. Marcus, P., and Oudar, J., Marcel Dekker, New York, 1995 Search PubMed.
  13. P. Kebarle and L. Tang, Anal. Chem., 1993, 65, 972A CrossRef CAS.
  14. R. Colton, A. D'Agnostino and J. C. Traeger, Mass Spectrom. Rev., 1995, 14, 79 CAS.
  15. I. I. Stewart and G. Horlick, Trends Anal. Chem., 1996, 15, 80 CAS.
  16. M. W. Raynor, G. D. Dawson, M. Balcerzak, W. G. Pretorius and L. Ebdon, J. Anal. At. Spectrom., 1997, 12, 1057 RSC.
  17. R. Gotz, J. W. Elgersma, J. C. Kraak and H. Poppe, Spectrochim. Acta, Part B, 1994, 49, 761 CrossRef.
  18. J. W. Elgersma, J. C. Kraak and H. Poppe, J. Anal. At. Spectrom., 1997, 12, 1065 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.