Application of inductively coupled plasma sector field mass spectrometry for the fast and sensitive determination and isotope ratio measurement of non-metals in high-purity process chemicals

(Note: The full text of this document is currently only available in the PDF Version )

Heiko Wildner


Abstract

The determination of non-metals (e.g., Si, P, S, Cl, As, Se and Br) by convenient quadrupole ICP-MS systems is extremely difficult owing to the presence of molecular spectral interferences from H, C, N, O and Ar and the high ionisation energies of these elements (8–13 eV). Therefore, the determination of anion forming elements is the domain of ion chromatography. Since this is a very time-consuming technique giving no isotopic information, the use of inductively coupled plasma sector field mass spectrometry (ICP-SFMS) was studied. By applying medium or high resolution from 3000 for Si and P to 12 000 for Se, the background can be lowered by up to five orders of magnitude, resulting in limits of detection between 1 pg g–1 for As (high purity water without dilution) and 2 µg g–1 for Cl (e.g., in H2SO4 after 25-fold dilution) in routine analysis and multi-element mode. Ionisation rates were found to be between 0.5% for Cl and 50% for Si. These rates can be improved by using a dried aerosol obtainable by an ultrasonic or microconcentric nebuliser. However, this does not always lead to higher sensitivity because these elements are lost in the desolvation stage at a rate between 50 and 90%. Nevertheless, the spectral interferences are lowered. Isotope ratios for Si, S, Cl, Se and Br are obtainable with a precision of 0.5–3%, allowing quantification by isotope dilution.


References

  1. K. Ruth, P. Schmidt and E. J. Mori, Spectroscopy, 1992, 7, 36 Search PubMed.
  2. J. Dahmen, M. Pfluger, M. Martin, L. Rottmann and G. Weichbrodt, Fresenius' J. Anal. Chem., 1997, 359, 410 CrossRef CAS.
  3. H. Wildner and R. Hearn, Fresenius' J. Anal. Chem., 1998, 360, 800 CrossRef CAS.
  4. L. E. Vanatta and D. E. Coleman, J. Chromatogr. A, 1997, 770, 105 CrossRef.
  5. J. Weiss, Ion Chromatography, VCH, Weinheim, 2nd edn., 1990 Search PubMed.
  6. Y. Takaku, K. Masuda, T. Takahashi and T. Shimamura, J. Anal. At. Spectrom., 1994, 9, 1385 RSC.
  7. J. Riondato, F. Vanhaecke, L. Moens and R. Dams, J. Anal. At. Spectrom., 1997, 12, 933 RSC.
  8. W. Tittes, N. Jakubowski, D. Stüwer, G. Tölg and J. A. C. Broekaert, J. Anal. At. Spectrom., 1994, 9, 1015 RSC.
  9. H. Wildner and G. Wünsch, Fresenius' J. Anal. Chem., 1996, 354, 807 CAS.
  10. J. S. Becker and H.-J. Dietze, J. Anal. At. Spectrom., 1997, 12, 881 RSC.
  11. F. Vanhaecke, L. Moens, R. Dams, I. Papadakis and P. Taylor, Anal. Chem., 1997, 69, 268 CrossRef CAS.
  12. S. Stürup, M. Hansen and C. Mølgaard, J. Anal. At. Spectrom., 1997, 12, 919 RSC.
  13. N. M. Reed, R. O. Cairns, R. C. Hutton and Y. Takaku, J. Anal. At. Spectrom., 1994, 9, 881 RSC.
  14. T. Wilke, H. Wildner and G. Wünsch, 1997, J. Anal. At. Spectrom., 1997, 12, 1083 Search PubMed.
  15. Handbook of Chemistry and Physics, ed. Weast, R. C., CRC Press, Cleveland, OH, 49th edn., 1969, p. E-71 Search PubMed.
  16. R. S. Houk, Anal. Chem., 1986, 58, 97.
  17. A. Seubert, Fresenius' J. Anal. Chem., 1994, 350, 210 CrossRef CAS.
  18. O. F. X. Donard and R. Lobinski, J. Anal. At. Spectrom., 1996, 11, 871 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.