Automated on-line separation–preconcentration system for inductively coupled plasma atomic emission spectrometry and its application to mercury determination

(Note: The full text of this document is currently only available in the PDF Version )

Pedro Cañada Rudner, Amparo Garcia de Torres, Jose M. Cano Pavón and Enrique Rodriguez Castellon


Abstract

An automated separation–preconcentration system coupled to an inductively coupled plasma atomic emission spectrometer is described. The preconcentration step is performed on a chelating resin microcolumn [silica gel functionalized with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide] placed in the injection valve of a simple flow manifold. The system was applied to the determination of mercury in sea-water and biological samples. The optimum experimental conditions were evaluated for the continuous preconcentration of mercury, the direct generation of mercury vapour and the final determination of this element by ICP-AES. The proposed method has a linear calibration range from 2 to at least 1000 ng ml–1 of mercury, with a detection limit of 1 ng ml–1 (S/N=3) and a throughput of 40 samples h–1, for a 6 ml sample volume. The accuracy of the method was examined by the analysis of certified reference materials and by determining the analyte content in spiked environmental waters. The results show sufficiently high recoveries.


References

  1. Deutsche Forschungs Gemeinschaft, Analyses of Hazardous Substances in Biological Materials (Methods for Biological Monitoring, Vol. 2), ed. Angerer, J., and Schaller, K. H., VCH, Weinheim, 1988 Search PubMed.
  2. J. W. McLaren, J. W. H. Lam, S. S. Berman, K. Akatsuka and M. A. Azeredo, J. Anal. At. Spectrom., 1993, 8, 279 RSC.
  3. C. J. Kantipuly and A. D. Westland, Talanta, 1988, 35, 1 CrossRef CAS.
  4. J. M. Riviello, A. Siriraks, R. M. Manabe, R. Roehl and M. Alforque, LC-GC, 1991, 4, 25 Search PubMed.
  5. C. J. Kantipuly, S. Katragadda, A. Chow and H. Gesser, Talanta, 1990, 37, 491 CrossRef CAS.
  6. K. Vermeiren, C. Vandecasteele and R. Dams, Analyst, 1990, 115, 17 RSC.
  7. R. Rattray and E. D. Salin, J. Anal. At. Spectrom., 1995, 10, 1053 RSC.
  8. B. M. Vanderborght and R. E. Van Grieken, Anal. Chem., 1977, 49, 311 CrossRef CAS.
  9. K. Akatsuka, J. W. McLaren, J. W. H. Lam and S. S. Berman, J. Anal. At. Spectrom., 1992, 7, 889 RSC.
  10. S. Arpadjan, L. Vuchkova and E. Kostadinova, Analyst, 1997, 122, 243 RSC.
  11. P. Burba and P. G. Willmer, Fresenius' Z. Anal. Chem., 1987, 329, 539 CAS.
  12. L. Ebdon, A. S. Fisher, S. J. Hill and P. J. Worsfold, J. Autom. Chem., 1991, 13, 281 Search PubMed.
  13. A. Siriraks, H. M. Kingston and J. M. Riviello, Anal. Chem., 1990, 62, 1185 CrossRef CAS.
  14. R. S. S. Murthy, Z. Horváth and R. M. Barnes, J. Anal. At. Spectrom., 1986, 1, 269 RSC.
  15. M. Sperling, X. Yin and B. Welz, Analyst, 1992, 117, 629 RSC.
  16. W. W. Van Berkel and F. J. M. J. Maessen, Spectrochim. Acta, Part B, 1988, 43, 1337 CrossRef.
  17. S. D. Hartenstein, J. Růžička and G. D. Christian, Anal. Chem., 1985, 57, 21 CrossRef CAS.
  18. S. Hirata, Y. Umezaki and M. Ikeda, Anal. Chem., 1986, 58, 2602 CrossRef CAS.
  19. I. G. Cook, C. W. McLeod and P. J. Worsfold, Anal. Proc., 1986, 23, 5 RSC.
  20. N. Furuta, K. R. Brushwyler and G. M. Hieftje, Spectrochim. Acta, Part B, 1989, 44, 349 CrossRef.
  21. X. Wang and R. M. Barnes, J. Anal. At. Spectrom., 1989, 4, 509 RSC.
  22. V. Porta, C. Sarzanini, O. Abollino, E. Mentasti and E. Carlini, J. Anal. At. Spectrom., 1992, 7, 19 RSC.
  23. R. R. Liversage, J. C. Van Loom and J. M. Andrade, Anal. Chim. Acta, 1984, 161, 275 CrossRef CAS.
  24. K. K. Unger, Porous Silica, Elsevier, New York, 1979 Search PubMed.
  25. G. M. Greenway and A. Townshend, Anal. Proc., 1993, 30, 438 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.