High resolution Fourier transform spectrometry in the visible and ultraviolet regions

(Note: The full text of this document is currently only available in the PDF Version )

Anne Thorne


Abstract

The extension to the visible and ultraviolet regions of Fourier transform spectroscopy (FTS), traditionally regarded as a technique for the infrared, has increased the range of its applications to analytical atomic spectroscopy, astrophysics and atmospheric physics. The relative advantages of FTS and grating spectroscopy have to be assessed differently at these shorter wavelengths; it is shown that the very accurate wavenumber scale and the high resolution attainable are usually the most important advantages offered by FTS. The signal-to-noise ratios that can be obtained with the two types of spectrometer with the same source and the same resolution are compared for absorption and emission spectra, and for scanning and multi-channel grating spectrometers. The suitability of FTS for upgrading databases, both for atomic emission spectroscopy and for astrophysical and atmospheric physics applications, is discussed and illustrated with examples of advances made in all these fields.


References

  1. A. Thorne, Physica Scripta, 1996, T65, 31 Search PubMed.
  2. A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner and G. Cox, J. Phys. E, 1987, 20, 54 CrossRef CAS.
  3. B. Gustafson, Physica Scripta, 1991, T34, 14 Search PubMed.
  4. J. W. Brault, Mikrochim. Acta, Wien, 1987, III, 215 Search PubMed.
  5. G. Nave, S. Johansson and A. P. Thorne, J. Opt. Soc. Am., 1997, B14, 1035 Search PubMed (and references cited therein).
  6. J. Chamberlain, The Principles of Interferometric Spectroscopy, Wiley, London, 1979, 291 Search PubMed.
  7. J. W. Brault, in Proc. of 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics, eds. Benz, A. O., Huber, M. C. E., and Mayor M., Saas Fee, 1985 Search PubMed.
  8. C. Schierle and A. P. Thorne, Spectrochim. Acta, Part B, 1995, 50, 27 CrossRef.
  9. A. Scheeline and P. B. Farnsworth, Spectrochim. Acta, Part B, 1993, 48, 99 CrossRef.
  10. T. R. O'Brian, M. E. WickliVe, J. E. Lawler, W. Whaling and J. W. Brault, J. Opt. Soc. Am., 1991, B8, 1185 Search PubMed.
  11. E. B. M. Steers and A. P. Thorne, J. Anal. At. Spectrom., 1993, 8, 309 RSC.
  12. E. B. M. Steers, Fresenius' J. Anal. Chem., 1996, 355, 868 CAS.
  13. R. L. Kurucz, Astron. Soc. Pacific Conf. Series, 1995, 81, 17 Search PubMed.
  14. D. S. Leckrone, S. Johansson, G. M. Wahlgren, C. R. Proffitt and T. Brage, Physica Scripta, 1996, T65, 110 Search PubMed (and references cited therein).
  15. J. C. Pickering, A. P. Thorne and R. C. M. Learner, Astron. Soc. Pacific Conf. Series, 1997, in the press Search PubMed.
  16. G. Nave, S. Johansson, R. C. M. Learner, A. P. Thorne and J. W. Brault, Astrophys. J. Supp. Series, 1994, 94, 221 Search PubMed.
  17. J. C. Pickering, A. J. J. Raassen, P. H. M. Uylings and S. Johansson, 1997, submitted for publication to Astrophys. J Search PubMed.
  18. G. Kalus, S. Johansson, G. M. Wahlgren, D. S. Leckrone, A. P. Thorne and J. C. Brandt, Astrophys. J., 1997, in the press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.