Use of lead-glass capillaries for micro-focusing of highly-energetic (0–60 keV) synchrotron radiation

(Note: The full text of this document is currently only available in the PDF Version )

K. Janssens, L. Vincze, B. Vekemans, F. Adams, M. Haller and A. Knöchel


Abstract

The performance of ellipsoidally shaped lead-glass capillaries for focusing the polychromatic synchrotron beam produced by a bending magnet of the DORIS positron storage ring (Hasylab, Hamburg, Germany) is discussed. The size, intensity and energy distribution of the focused beam produced by such capillaries are compared with those of beams generated by means of straight borosilicate capillaries, indicating that beam sizes ofca. 4 µm at the sample surface can be obtained with a total flux density that is ca. ten times higher than when a collimated beam is employed. Synchrotron radiation with energies up to 60 keV is focused, leaving the original energy distribution of the white synchrotron beam virtually unchanged. The analytical characteristics of the µ-XRF set-up at Beamline L of Hasylab, when equipped with a lead-glass capillary, were investigated by means of NIST SRMs and indicate that interference-free absolute/relative detection limits in the 1–10 fg/0.8–2 ppm range are achievable from 100 µm silicate-type samples for the elements from Mn (Z=25) to Gd (Z=64) using their Kα lines within 1000 s counting time. Elemental yields are situated in the 10–100 counts s–1 per 100 mA per (µg cm–2) range. As illustrations of the type of investigations these highly energetic, micrometre-sized beams make possible, the two-dimensional mapping of the distribution of REEs (rare earth elements) and other heavy elements in geological igneous rock samples and the three-dimensional non-destructive analysis of heavy metals (such as V, Fe, Ni and Mo) in individual fly-ash particles by means of fluorescence microtomography are briefly described.


References

  1. K. W. Jones and G. M. Gordon, in Handbook on X-ray Spectrometry, ed. van Grieken, R. E., and Markowics, A. A., Marcel Dekker, New York, 1993, ch. 8 Search PubMed.
  2. J. Smith and M. Rivers, in Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R., Chapman and Hall, London, 1995, p. 163 Search PubMed.
  3. K. Janssens, L. Vincze, J. Rubio, F. Adams and G. Bernasconi, J. Anal. At. Spectrom., 1994, 9, 151 RSC.
  4. B. A. Carpenter, Adv. X-ray Anal., 1989, 32, 115 Search PubMed.
  5. M. Bavdas, A. Knöchel, P. Ketelsen, W. Petersen, N. Gurker, M. H. Salehi and T. Dietrich, Nucl. Instrum. Methods, 1988, A266, 308 Search PubMed.
  6. F. van Langevelde, D. K. Bowen, G. H. J. Tros, R. D. Vis, A. Huizing and D. K. G. de Boer, Nucl. Instrum. Methods, 1990, A292, 719 Search PubMed.
  7. Y. Ghoshi, S. Aoki, A. Iida, S. Hayakawa, H. Yamaij and K. Sakurai, Jpn. J. Appl. Phys., 1987, 127, L1260.
  8. A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones and M. L. Rivers, Nucl. Instrum. Methods, 1988, A266, 318 Search PubMed.
  9. K. W. Jones and B. M. Gordon, Anal. Chem., 1989, 61, 341A CAS.
  10. F. Lechtenberg, S. Garbe, J. Bauch, D. Dingwell, J. Freitag, M. Haller, T. Hansteen, P. Ippach, A. Knöchel, M. Radtke, C. Romano, P. Sachs, H. Schmincke and H.-J. Ullrich, J. Trace Microprobe Tech., 1996, 14, 561 Search PubMed.
  11. K. Janssens, L. Vincze, B. Vekemans, M. Radkte, M. Haller, A. Knöchel and T. Williams, Fresenius' J. Anal. Chem., submitted Search PubMed.
  12. L. Vincze, K. Janssens, F. Adams and A. Rindby, X-ray Spectrom., 1995, 24, 27 CAS.
  13. A. Rindby, X-ray Spectrom., 1993, 22, 187 CAS.
  14. D. J. Thiel, D. H. Bilderback, A. Lewis and E. Stern, Nucl. Instrum. Methods Phys. Res., 1992, A317, 597 Search PubMed.
  15. D. H. Bilderback, D. J. Thiel, R. Pahl and K. E. Brister, J. Synchr. Radiat., 1994, 1, 37 Search PubMed.
  16. D. H. Bilderback, S. A. Hoffman and D. J. Thiel, Science, 1994, 263, 201 CrossRef CAS.
  17. R. Pahl and D. H. Bilderback, Proc. SPIE-Int. Soc. Opt. Eng., 1996, 2805, 202 Search PubMed.
  18. A. Rindby and S. Larsson, Rev. Sci. Instrum., 1995, 22, 1450.
  19. M. Haller, A. Knöchel and M. Radtke, Hasylab. Jahresber., 1996, 993 Search PubMed.
  20. L. Vincze, K. Janssens, F. Adams and K. W. Jones, Spectrochim. Acta, Part B, 1995, 50, 1481 CrossRef.
  21. B. Vekemans, K. Janssens, F. Adams and J. Hertogen, X-ray Spectrom., 1997, 26, 333 CAS.
  22. S. Chenery, C. T. Williams, T. A. Elliot, P. L. Forey and L. Werdelin, Microchim. Acta, 1996, 13, 259 CAS.
  23. C. G. Choi, G. Remond and D. B. Isabelle, Nucl. Instrum. Methods, 1996, B109/110, 606 Search PubMed.
  24. M. J. Streck, F. Lechtenberg, P. Sachs and H. U. Schmincke, Hasylab. Jahresber., 1996, 945 Search PubMed.
  25. K. Janssens, L. Vincze, B. Vekemans, A. Aerts, F. Adams, K. W. Jones and A. Knöchel, Microchim. Acta, 1996, 13, 87 CAS.
  26. E. Roedder, Geochim. Cosmochim. Acta, 1990, 54, 495 CAS.
  27. D. A. Vanko, S. R. Sutton, M. L. Rivers and R. J. Bodnar, Chem. Geol., 1993, 109, 125 CrossRef CAS.
  28. D. A. Vanko, R. J. Bodnar and M. A. Sterner, Geochim. Cosmochim. Acta, 1988, 52, 2451 CAS.
  29. T. Umsonst, B. Bühn, M. Radkte, M. Haller and A. Knöchel, Hasylab. Annu. Rep., 1996, 914 Search PubMed.
  30. B. Bühn, A. Rankin, M. Haller, M. Radtke and A. Knöchel, Hasylab. Jahresber., 1997, 959 Search PubMed.
  31. G. T. Herman, Image Reconstructions from Projections, Academic Press, London 1980 Search PubMed.
  32. J. C. Russ, The Image Processing Handbook, CRC Press, Boca Raton, FL, 2nd edn. 1995 Search PubMed.
  33. A. Rindby, P. Engstrom and K. Janssens, Nucl. Instrum. Methods, 1997, B124, 228 Search PubMed.
  34. J. Nellessen, Diplomarbeit, Fachbereich Chemie, Universität Dortmund, 1996.
  35. A. Sekkalariou, M. Cholewa, A. Saint and G. Legge, Meas. Sci. Technol., 1997, 8, 746 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.