Volatile species of arsenic(iii) with fluoride for gaseous sample introduction into the inductively coupled plasma

(Note: The full text of this document is currently only available in the PDF Version )

A. Lopez-molinero, M. Benito, Y. Aznar, A. Villareal and J. R. Castillo


Abstract

The volatilization of As and its introduction into an inductively coupled plasma (ICP) spectrometer are described. The method is based on the formation of gaseous arsenic trifluoride, generated by the reaction of AsIII with fluoride in sulfuric acid medium. The volatile compound is obtained in a discontinuous or batch mode after injecting 200 µl of As sample and 120 µl of 3% m/v sodium fluoride solution into 500 µl of concentrated sulfuric acid. The gaseous arsenic trifluoride is fed directly to the ICP torch by a flow (750 ml min–1) of Ar carrier gas. When the As emission intensity at 193.696 nm is measured versus concentration a linear calibration graph is obtained between 10 and 500 µg ml–1 of AsIII; the absolute detection limit is 20 ng working with a solution volume of 200 µl. The relative standard deviation for ten measurements of 50 µg ml–1 of AsIII is 5.38%. Interferences due to alkali, alkaline earth, metallic and metalloid elements were studied; anions were also considered. It was observed that interferences from most of the species studied are relatively small. However, the interferences due to alkaline earth elements and Pb are larger than those caused by other species probably owing to sulfate precipitation. Only nitrate produces severe interference. The method was applied to the determination of As in a liquid insecticide sample and the results were compared with those obtained using a standard method.


References

  1. R. F. Browner and A. W. Boorn, Anal. Chem., 1984, 56, 786A CAS.
  2. K. Bachmann, Talanta, 1982, 29, 1 CrossRef.
  3. T. Nakahara, Prog. Anal. At. Spectrosc., 1983, 6, 163 Search PubMed.
  4. J. M. Gutierrez, Y. Madrid and C. Camara, Spectrochim. Acta, Part B, 1993, 48, 1551 CrossRef.
  5. A. Lopez Molinero, A. Morales, A. Villareal and J. R. Castillo, Fresenius' J. Anal. Chem., 1997, 358, 599 CrossRef.
  6. A. Lopez Molinero, A. Ferrer and J. R. Castillo, Talanta, 1993, 40, 1397 CrossRef.
  7. S. Rapsomanikis, O. F. X. Donard and J. H. Weber, Anal. Chem., 1986, 58, 35 CrossRef CAS.
  8. K. Fujiwara, Y. Okamoto, M. Ohno and T. Kumamaru, Anal. Sci., 1995, 11, 829 CAS.
  9. S. Tao, Y. Okamoto and T. Kumamaru, Anal. Sci., 1995, 11, 319 CAS.
  10. R. E. Sturgeon, S. N. Willie and S. S. Berman, Anal. Chem., 1989, 61, 1867 CrossRef CAS.
  11. L. Ebdon, P. Goodall, S. J. Hill, P. Stockwell and K. C. Thompson, J. Anal. At. Spectrom., 1994, 9, 1417 RSC.
  12. M. B. de la Calle Guntiñas, R. Łobínski and F. C. Adams, J. Anal. At. Spectrom., 1995, 10, 111 RSC.
  13. M. Villanueva Tagle, M. R. Fernández de la Campa and A. Sanz-Medel, Anal. Quim., 1996, 92, 213 Search PubMed.
  14. M. C. Valdés-Hevia y Temprano, M. R. Fernandez and A. Sanz-Medel, J. Anal. At. Spectrom., 1994, 9, 231 RSC.
  15. R. E. Sturgeon, S. N. Willie and S. S. Berman, J. Anal. At. Spectrom., 1989, 4, 443 RSC.
  16. V. Rigin, Anal. Chim. Acta, 1993, 283, 895 CrossRef CAS.
  17. J. H. Runnels and J. H. Gibson, Anal. Chem., 1967, 39, 1398 CrossRef CAS.
  18. R. K. Skogerboe, D. L. Dick, D. A. Pavlica and F. E. Lichte, Anal. Chem., 1975, 47, 569.
  19. X. W. Guo and X. M. Guo, Anal. Chim. Acta, 1996, 330, 237 CrossRef CAS.
  20. S. Tesfalidet and K. Irgum, Anal. Chem., 1988, 60, 2031 CrossRef CAS.
  21. J. D. Smith, in Comprehensive Inorganic Chemistry, ed. Bailar, J. C., Emeleus, H. J., Nyholm, R., and Trotman-Dickenson, A. F., Pergamon Press, Oxford, 1973, vol. 2, p. 588 Search PubMed.
  22. M. F. Huang, S.-J. Jiang and C.-J. Hwang, J. Anal. At. Spectrom., 1995, 10, 31 RSC.
  23. Z. Marczenko, Separation and Spectrophotometric Determination of Elements, Ellis Horwood, Chichester, 1986, p. 151 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.