gDetermination of trace amounts of antimony in pure copper by high-power nitrogen microwave-induced plasma atomic emission spectrometry with hydride generation

(Note: The full text of this document is currently only available in the PDF Version )

Taketoshi Nakahara and Yimu Li


Abstract

An annular-shaped high-power nitrogen microwave-induced plasma (N2-MIP) produced at atmospheric pressure by an Okamoto cavity has been used as a new excitation source for the determination of trace amounts of Sb in pure copper by hydride generation atomic emission spectrometry (AES). Under the optimized experimental conditions, the best attainable detection limit at the Sb I 217.581 nm line by use of N2-MIP-AES coupled with hydride generation was 4.46 ng ml–1 of Sb with a linear dynamic range of 50–5000 ng ml–1 of Sb. The presence of several diverse elements was found to cause a depressing interference on the determination of Sb using the present technique. Of several pre-reductants examined, thiourea was found to be the most preferable to reduce SbV to SbIII prior to hydride generation for the determination of total Sb i.e., SbIII+SbV. The present method using thiourea not only as a pre-reductant but also as an interference-releasing agent was applied to the determination of low concentrations of Sb in samples of high-purity copper metals. The results obtained by this method were in good agreement with the reference values.


References

  1. C. I. M. Beenakker, Spectrochim. Acta, Part B, 1976, 31, 483 CrossRef.
  2. R. D. Deutsch and G. M. Hieftje, Appl. Spectrosc., 1985, 39, 214 CAS.
  3. D. L. Haas and J. D. Jamerson, Spectrochim. Acta, Part B, 1987, 42, 299 CrossRef.
  4. J. J. Urh and J. W. Carnahan, Appl. Spectrosc., 1986, 40, 877 CAS.
  5. R. D. Satzger, F. L. Fricke and J. A. Caruso, J. Anal. At. Spectrom., 1988, 3, 319 RSC.
  6. J. T. Creed, T. M. Davidson, W.-L. Shen, P. G. Brown and J. A. Caruso, Spectrochim. Acta, Part B, 1989, 44, 909 CrossRef.
  7. J. Hubert, M. Moisan and A. Ricard, Spectrochim. Acta, Part B, 1979, 33, 1 CrossRef.
  8. M. H. Abdallah, S. Coulombe, J. M. Mermet and J. Hubert, Spectrochim. Acta, Part B, 1982, 37, 583 CrossRef.
  9. P. S. Moussounda, P. Ranson and J. M. Mermet, Spectrochim. Acta, Part B, 1985, 40, 641 CrossRef.
  10. M. Selby, R. Rezaaiyaan and G. M. Hieftje, Appl. Spectrosc., 1987, 41, 749 CAS.
  11. Y. Okamoto, M. Yasuda and S. Murayama, Jpn. J. Appl. Phys., 1990, 29, L670 CAS.
  12. Y. Okamoto, Anal. Sci., 1991, 7, 283 CAS.
  13. Y. Okamoto, J. Anal. At. Spectrom., 1994, 9, 745 RSC.
  14. K. Oishi, Y. Okamoto, T. Iino, M. Koga, T. Shirasaki and N. Furuta, Spectrochim. Acta, Part B, 1994, 49, 745 CrossRef.
  15. M. Ohata and N. Furuta, J. Anal. At. Spectrom., 1997, 12, 341 RSC.
  16. K. Ogura, H. Yamada, Y. Sato and Y. Okamoto, Appl. Spectrosc., 1997, 51, 1496 CAS.
  17. T. Nakahara, Prog. Anal. At. Spectrosc., 1983, 6, 163 Search PubMed.
  18. T. Nakahara, in Sample Introduction in Atomic Spectroscopy, ed. Sneddon, J., Elsevier, Amsterdam, 1990, pp. 255–288 Search PubMed.
  19. T. Nakahara, Spectrochim. Acta Rev., 1991, 14, 95 Search PubMed.
  20. T. Nakahara, in Advances in Atomic Spectroscopy, ed. Sneddon, J., JAI Press, Greenwich, CT, 1995, vol. 2, pp. 139–178 Search PubMed.
  21. J. Dedina and D. L. Tsalev, Hydride Generation Atomic Absorption Spectrometry, John Wiley, Chichester, West Sussex, 1995, pp. 151–181 Search PubMed.
  22. T. Nakahara and N. Kikui, Anal. Chim. Acta, 1985, 172, 127 CrossRef CAS.
  23. IUPAC, Nomenclature, Symbols, Units, and Their Usage in pectrochemical Analysis, Revision 1975, Part II, Spectrochim. Acta, Part B, 1978, 33, 248 Search PubMed.
  24. J. P. Robin, Prog. Anal. At. Spectrosc., 1982, 5, 79 Search PubMed.
  25. E. I. Onstott and H. A. Latinen, J. Am. Chem. Soc., 1950, 72, 4724 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.