Analyte ionization in a furnace atomization plasma emission source

(Note: The full text of this document is currently only available in the PDF Version )

R. E. Sturgeon and R. Guevremont


Abstract

Temporally and spatially integrated intensities of a number of atomic and ionic lines emitted by thermometric species introduced into an rf He FAPES source were used to calculate the degree of analyte ionization. At 50 W forward power, an ionization temperature of 6025±350 K was derived from use of Cr, Mg, Fe, Co, Mn, Cd and Zn. The degree of ionization varies from 94% for Cr to 7% for Zn. Precision of determination is better than 15%. Increasing the rf power from 20 to 100 W enhances the degree of ionization by less than 50% in most cases. Addition of 0.1% (v/v) nitrogen impurity to the He plasma gas decreases the degree of ionization and is consistent with comparable enhancements in ionization noted as the He purge gas flow rate is increased, thereby yielding a cleaner plasma environment. Implications of these data for use of FAPES in both an atomic emission mode and as an ion source for mass spectrometry are discussed.


References

  1. D. C. Liang and M. W. Blades, Spectrochim. Acta, Part B, 1989, 44, 1059 CrossRef.
  2. R. E. Sturgeon, S. N. Willie, V. T. Luong, S. S. Berman and J. G. Dunn, J. Anal. At. Spectrom., 1989, 4, 669 RSC.
  3. W. Frech and D. C. Baxter, Spectrochim. Acta, Part B, 1990, 45, 867 CrossRef.
  4. R. E. Sturgeon, S. N. Willie, V. T. Luong and S. S. Berman, Anal. Chem., 1990, 62, 2370 CrossRef CAS.
  5. R. E. Sturgeon, S. N. Willie and V. T. Luong, Spectrochim. Acta, Part B, 1991, 46, 1021 CrossRef.
  6. R. E. Sturgeon, V. Pavski and C. L. Chakrabarti, Spectrochim. Acta, Part B, 1996, 51, 999 CrossRef.
  7. V. Pavski, R. E. Sturgeon and C. L. Chakrabarti, J. Anal. At. Spectrom., 1997, 12, 709 RSC.
  8. J. W. Olesik, Anal. Chem., 1996, 68, 469A CAS.
  9. P. W. J. M. Boumans and F. J. de Boer, Spectrochim. Acta, Part B, 1977, 32, 354 CrossRef.
  10. R. E. Sturgeon and R. Guevremont, Anal. Chem., 1997, 69, 2129 CrossRef CAS.
  11. R. Guevremont and R. E. Sturgeon, manuscript in preparation.
  12. J.-M. Mermet, Anal. Chim. Acta, 1991, 250, 85 CrossRef CAS.
  13. V. Pavski, C. L. Chakrabarti and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 1399 RSC.
  14. R. E. Sturgeon, V. T. Luong, S. N. Willie and R. K. Marcus, Spectrochim. Acta, Part B, 1993, 48, 893 CrossRef.
  15. NIST WebSite: NIST Atomic Spectroscopic Database Version 1.1, http://aeldata.phy.nist.gov/nist–atomic–spectra.html.
  16. J. Reader, C. H. Corliss, W. L. Wiese and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, U.S. Department of Commerce, Washington, DC, USA, 1980 Search PubMed.
  17. W. L. Wiese, M. W. Smith and B. M. Miles, Atomic Transition Probabilities: Volume II Sodium Through Calcium, a Critical Data Compilation, U.S. Department of Commerce, Washington, DC, USA, 1969 Search PubMed.
  18. L. deGalan, R. Smith and J. D. Winefordner, Spectrochim. Acta, Part B, 1968, 23, 521 CrossRef CAS.
  19. S. Imai and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 493 RSC.
  20. K. E. A. Ohlsson, R. E. Sturgeon, S. N. Willie and V. T. Luong, J. Anal. At. Spectrom., 1993, 8, 41 RSC.
  21. R. E. Sturgeon and H. Falk, Spectrochim. Acta, Part B, 1988, 43, 421 CrossRef.
  22. R. E. Sturgeon, V. T. Luong and R. K. Marcus, paper No. 272, substanpresented at the Twenty-First Annual Conference of the Federation of Analytical Chemistry and Spectroscopy Societies, St. Louis, MO, USA, 1994.
  23. M. Ohata and N. Furuta, J. Anal. At. Spectrom., 1997, 12, 341 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.