Determination of uranium in urine by inductively coupled plasma mass spectrometry with pneumatic nebulization

(Note: The full text of this document is currently only available in the PDF Version )

Michele Caddia and Bent Schack Iversen


Abstract

An analytical method using inductively coupled argon plasma mass spectrometry with pneumatic nebulization sample introduction for the determination of uranium in urine is described. The urine samples were diluted 1+19 (1% HNO3 in Milli-Q water) before analysis. Standard additions calibration with iridium (193Ir) as an internal standard was used to compensate for undesirable matrix effects. The additions to the diluted samples were 0.1, 0.5, 1.0 and 2.0 ng l–1, equivalent to 2, 10, 20 and 40 ng l–1in undiluted urine. The detection limit of the method is 0.32 ng l–1, which is sufficiently low to measure uranium in non-exposed subjects. The precision at the 8.9 ng l–1 level was 3.9% (RSD), and at the 28.9 ng l–1 level 2.0%. The recovery for 20 ng l–1 added to ten different samples was 101.5%. Urine samples from 18 non-exposed subjects were analysed. The mean concentration found was 16.1 ng l–1 (median=15.1 ng l–1) with 14.9 ng l–1 (median=13.5 ng l–1) for male and 17.2 ng l–1 (median=17.6 ng l–1) for female subjects.


References

  1. I. M. Fisenne, in Handbook on Metals in Clinical and Analytical Chemistry, ed. Seiler, H. G., Sigel, A., and Sigel, H., Marcel Dekker, New York, 1994, pp. 640–649 Search PubMed.
  2. C. D. Hammond, in CRC Handbook of Chemistry and Physics, ed. Weast, R. C., CRC Press, Boca Raton, FL, 1987pp. B5–B43 Search PubMed.
  3. H. Spencer, D. Osis, I. M. Fisenne, P. M. Perry and N. Harley, Radiat. Res., 1990, 124, 90 CAS.
  4. M. E. Wrenn, H. Ruth, D. Burleigh and N. P. Singh, J. Radioanal. Nucl. Chem., 1992, 156, 407 CAS.
  5. E. Bosshard, B. Zimmerli and Ch. Schlatter, Chemosphere, 1992, 24, 309 CAS.
  6. A. R. Byrne and L. Benedik, Sci. Total. Environ., 1991, 107, 143 CrossRef CAS.
  7. H. S. Dang, V. R. Pullat and K. C. Pillai, Health Phys., 1992, 62, 562 Search PubMed.
  8. C. L. Duarte and M. S. F. Szeles, J. Radioanal. Nucl. Chem., 1994, 177, 73 CAS.
  9. W. R. Kelly, J. D. Fasset and S. A. Hotes, Health Phys., 1987, 52, 331 Search PubMed.
  10. D. W. Medley, R. L. Kathren and R. L. Miller, Health Phys., 1994, 67, 122 Search PubMed.
  11. A. Lorber, Z. Karpas and L. Halicz, Anal. Chim. Acta, 1996, 334, 295 CrossRef CAS.
  12. B. G. Ting, D. C. Paschal and K. L. Caldwell, J. Anal. At. Spectrom., 1996, 11, 339 RSC.
  13. D. Beyer, R. Biehl and G. Pilwat, Health Phys., 1993, 64, 321 Search PubMed.
  14. P. Allain, S. Berre, A. Premel-Cabic, Y. Mauras, T. Delaporte and A. Cournot, Anal. Chim. Acta, 1991, 251, 183 CrossRef CAS.
  15. H. E. Solberg, Scand. J. Clin. Lab. Invest., 1986, 46, Suppl. 184, 125.
  16. O. Vesterberg, L. Alessio, D. Brune, L. Gerhardsson, R. Herber, G. Kazantzis, G. F. Nordberg and E. Sabbioni, Scand. J. Work Environ. Health, 1993, 19, Suppl., 19 Search PubMed.
  17. H. E. Solberg, Clin. Chim. Acta, 1987, 170, S13 CrossRef CAS.
  18. O. M. Poulsen, E. Holst and J. M. Christensen, Pure Appl. Chem., 1997, 69, 1601 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.