Comparison of cryogenic and membrane desolvation for attenuation of oxide, hydride and hydroxide ions and ions containing chlorine in inductively coupled plasma mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Michael G. Minnich and R. S. Houk


Abstract

Conventional, cryogenic and membrane desolvation methods were compared with respect to sensitivity, MO+/M+ signal ratios and the aerosol gas flow rate required to maximize M+ and MO+ signals. Thorium was used to represent the actinides, which form relatively strong hydrides and hydroxides. The LaO+/La+ ratio is reduced from 0.24% with conventional desolvation to 0.08% with membrane desolvation and 0.01% with cryogenic desolvation. Membrane desolvation reduces ThH+ and ThOH+ 2-fold compared with conventional desolvation. Cryogenic desolvation attenuates ThH+ 7-fold and ThOH+ 20-fold compared with conventional desolvation. The three desolvation methods were also evaluated for the removal of ClO+ and ArCl+ for the determination of vanadium and arsenic at trace levels in the presence of chloride. The density of oxygen atoms is reduced as water vapor is removed, and chloride is also removed, presumably as hydrogen chloride. The concentration of vanadium in a urine standard reference material was determined by standard additions to be 7 ppb with cryogenic desolvation and 5 ppb with membrane desolvation. Analysis of several nasal wash samples using cryogenic and membrane desolvation yielded results that agreed within 5% for the two methods in all cases except for the sample with the highest V+ concentration.


References

  1. R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, A. L. Gray and C. E. Taylor, Anal. Chem., 1980, 52, 2283 CrossRef CAS.
  2. A. L. Gray, Spectrochim. Acta, Part B, 1986, 41, 151 CrossRef.
  3. S. H. Tan and G. Horlick, Appl. Spectrosc., 1986, 40, 445 CAS.
  4. R. C. Hutton and A. N. Eaton, J. Anal. At. Spectrom., 1987, 2, 595 RSC.
  5. K. W. Olson, W. J. Haas, Jr. and V. A. Fassel, Anal. Chem., 1977, 49, 632 CrossRef CAS.
  6. V. A. Fassel and B. Bear, Spectrochim. Acta, Part B, 1986, 41, 1089 CrossRef.
  7. D. R. Wiederin, R. S. Houk, R. K. Winge and A. P. D'Silva, Anal. Chem., 1990, 62, 1155 CrossRef CAS.
  8. L. C. Alves, D. R. Wiederin and R. S. Houk, Anal. Chem., 1992, 64, 1164 CrossRef CAS.
  9. L. C. Alves, L. A. Allen and R. S. Houk, Anal. Chem., 1993, 65, 2468 CAS.
  10. L. C. Alves, M. G. Minnich, D. R. Wiederin and R. S. Houk, J. Anal. At. Spectrom., 1994, 9, 399 RSC.
  11. M. G. Minnich, M. A. Woodin, D. C. Christiani and R. S. Houk, J. Anal. At. Spectrom., 1997, 12, 1345 RSC.
  12. C. Pin, P. Telouk and J.-L. Imbert, J. Anal. At. Spectrom., 1995, 10, 93 RSC.
  13. A. Gustavsson, Spectrochim. Acta, Part B, 1987, 42, 111 CrossRef.
  14. K. Backstrom, A. Gustavsson and P. Hietala, Spectrochim. Acta, Part B, 1989, 44, 1041 CrossRef.
  15. H. Tao and A. Miyazaki, J. Anal. At. Spectrom., 1995, 10, 1 RSC.
  16. R. I. Botto and J. J. Zhu, J. Anal. At. Spectrom., 1994, 9, 905 RSC.
  17. I. B. Brenner, A. Zander, M. Plantz and J. J. Zhu, J. Anal. At. Spectrom., 1997, 12, 273 RSC.
  18. J. W. Lam and J. W. McLaren, J. Anal. At. Spectrom., 1990, 5, 419 RSC.
  19. N. Jakubowski, I. Feldmann and D. Stuewer, J. Anal. At. Spectrom., 1993, 8, 969 RSC.
  20. A. R. Date and A. L. Gray, Analyst, 1983, 108, 159 RSC.
  21. A. L. Gray and A. R. Date, Analyst, 1983, 108, 1033 RSC.
  22. A. R. Date and A. L. Gray, Spectrochim. Acta, Part B, 1983, 38, 29 CrossRef.
  23. A. R. Date and A. L. Gray, Spectrochim. Acta, Part B, 1985, 40, 115 CrossRef.
  24. D. J. Douglas and R. S. Houk, Prog. Anal. At. Spectrosc., 1985, 8, 1 Search PubMed.
  25. G. Horlick, S. H. Tan, M. A. Vaughan and C. A. Rose, Spectrochim. Acta, Part B, 1985, 40, 1555 CrossRef.
  26. A. L. Gray and J. G. Williams, J. Anal. At. Spectrom., 1987, 2, 81 RSC.
  27. A. L. Gray and J. G. Williams, J. Anal. At. Spectrom., 1987, 2, 599 RSC.
  28. M. A. Vaughan and G. Horlick, Appl. Spectrosc., 1986, 40, 434 CAS.
  29. G. Horlick and Y. Shao, in ICPs for Analytical Atomic Spectrometry, ed. Montaser, A., and Golightly, D., VCH, New York, 2nd edn., 1992, ch. 12, p. 569, 579 Search PubMed.
  30. M. A. Vaughan, G. Horlick and S. H. Tan, J. Anal. At. Spectrom., 1987, 2, 765 RSC.
  31. S. H. Tan and G. Horlick, J. Anal. At. Spectrom., 1987, 2, 745 RSC.
  32. M. D. Erickson, J. H. Aldstadt, J. S. Alvarado, J. S. Crain, K. A. Orlandini and L. S. Smith, J. Haz. Mat., 1995, 41, 351 Search PubMed.
  33. Applications of Inductively Coupled Plasma Mass Spectrometry to Radionuclide Determinations, ed. Morrow, R. W., and Crain, J. S., American Society for Testing and Materials, Philadelphia, PA, 1995 Search PubMed.
  34. J. M. Barrero Moreno, M. Betti and J. I. Garcia Alonso, J. Anal. At. Spectrom., 1997, 12, 355 RSC.
  35. J. S. Crain and J. Alvarado, J. Anal. At. Spectrom., 1994, 9, 1223 RSC.
  36. F. Vanhaecke, R. Dams and C. Vandecasteele, J. Anal. At. Spectrom., 1993, 8, 433 RSC.
  37. R. S. Houk, R. K. Winge and X. Chen, J. Anal. At. Spectrom., 1997, 12, 1139 RSC.
  38. S. R. Koirtyohann, J. S. Jones and D. A. Yates, Anal. Chem., 1980, 52, 1965 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.