Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment

(Note: The full text of this document is currently only available in the PDF Version )

Jack X. Zhou, Xiandeng Hou, Karl X. Yang and Robert G. Michel


Abstract

It is demonstrated, for the first time, that solid-state lasers based on optical parametric oscillation (OPO) allow relatively rapid sequential multi-element analysis of samples by laser-excited atomic fluorescence spectrometry (LEAFS) in a graphite furnace. These lasers are tunable by facile computer keyboard control over the wavelength region 220–2000 nm. A method is described for the sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in a river sediment standard reference material (NIST SRM 2704) by graphite furnace LEAFS. With a slew rate of 0.125 nm s–1, the OPO laser could be tuned to cover the wavelength range needed for these elements, from 228 to 304 nm, in 15 min. This allowed each element to be determined sequentially with the analysis time determined primarily by the slow heating cycle of the furnace rather than the laser wavelength tuning. Detection limits in the multi-element mode were 545, 111, 28, 445 and 24 fg for cadmium, cobalt, lead, manganese and thallium, respectively, limited primarily by the low repetition rate of the laser (10 Hz). The multi-element detection limits were within a factor of 2–4 of those in the single element mode. Higher excitation energies, by a factor of 2–5, were required to optically saturate the transitions of the analytes in the sediment sample solution compared with aqueous standards. By use of several aliquots of one sample solution, and simple aqueous calibration, it was possible to analyze the sample, accurately, for the five elements over a concentration range between 1 ng ml–1 for thallium and 460 ng ml–1for manganese. Different dilutions were not necessary owing to the long calibration range of the technique. The high sensitivity of LEAFS allowed sufficient initial dilution to remove an interference on thallium that is normally irresolvable by atomic absorption measurements of the same sample in the same graphite furnace.


References

  1. L. M. Fraser and J. D. Winefordner, Anal. Chem., 1971, 43, 1693 CrossRef CAS.
  2. D. J. Butcher, J. P. Dougherty, F. R. Preli, A. P. Walton, G. T. Wei, R. L. Irwin and R. G. Michel, J. Anal. At. Spectrom., 1988, 3, 1059 RSC.
  3. B. W. Smith, M. Glick, K. N. Spears and J. D. Winefordner, Appl. Spectrosc., 1989, 43, 376 CAS.
  4. O. Axner, I. Magnusson, J. Petersson and S. Sjöström, Appl. Spectrosc., 1987, 41, 19 CAS.
  5. K. M. Dyumasv, A. A. Manenkov, A. P. Maslyukov, G. A. Mafyushin, V. S. Nechifailo and A. M. Prokhorov, J. Opt. Soc. Am. B: Opt. Phys., 1992, 9, 143 Search PubMed.
  6. M. Schütz, U. Heitmann and A. Hese, Appl. Phys. B, 1995, 61, 339.
  7. K. Niemax, A. Zybin, C. Schnürer-Patschan and H. Groll, Anal. Chem., 1996, 68, 351A CAS.
  8. A. Zybin, C. Schnürer-Patschan and K. Niemax, Spectrochim. Acta, Part B, 1992, 47, 1519 CrossRef.
  9. T. Okazaki, T. Imasaka and N. Ishibashi, Anal. Chim. Acta, 1988, 209, 327 CrossRef CAS.
  10. K. Sakurai and N. Yamada, Opt. Lett., 1989, 14, 233 CAS.
  11. T. Imasaka, T. Hiraiwa and N. Ishibashi, Mikrochim. Acta, Part II, 1989, 225 Search PubMed.
  12. C. L. Tang and L. K. Cheng, in Fundamentals of Optical Parametric Processes and Oscillators, ed. Latokhov, V. S., Shank, C. V., Shen, Y. R., and Walther, H., Harwood Academic, Amsterdam, The Netherlands, 1995 Search PubMed.
  13. M. J. Johnson, J. G. Haub, H. D. Barth and B. J. Orr, Opt. Lett., 1993, 18, 441 CAS.
  14. S. Kawasaki, R. J. Lane and C. L. Tang, Appl. Opt., 1994, 33, 992 CAS.
  15. J. X. Zhou, X. Hou, S.-J. J. Tsai, K. X. Yang and R. G. Michel, Anal. Chem., 1997, 69, 490 CrossRef CAS.
  16. M. Bettinelli, N. Pastorelli and U. Baroni, Anal. Chim. Acta, 1986, 185, 109 CrossRef CAS.
  17. J. G. Sen Gupta and J. L. Bouvier, Talanta, 1995, 42, 269 CrossRef CAS.
  18. C. M. Davidson, R. P. Thomas, S. E. McVey, R. Perala, D. Littlejohn and A. M. Ure, Anal. Chim. Acta, 1994, 291, 277 CrossRef CAS.
  19. M. S. Epstein, G. R. Carnrick, W. Slavin and N. J. Miller-Ihli, Anal. Chem., 1989, 61, 1414 CrossRef CAS.
  20. M. J. T. Carrondo, F. Reboredo, R. M. B. Ganho and J. F. S. Oliveira, Talanta, 1984, 31, 561 CrossRef CAS.
  21. G. S. Caravajal and K. I. Mahan, Anal. Chim. Acta, 1983, 147, 133 CrossRef CAS.
  22. N. Omenetto, P. Cavalli, M. Broglia, P. Qi and G. Rossi, J. Anal. At. Spectrom., 1988, 3, 231 RSC.
  23. M. A. Bolshov, S. N. Rudnev and B. Hutsch, J. Anal. At. Spectrom., 1992, 7, 1 RSC.
  24. N. Omenetto and J. D. Winefordner, Prog. Anal. At. Spectrosc., 1979, 2, 1 Search PubMed.
  25. B. C. Johnson, V. J. Newell, J. B. Clark and E. S. McPhee, J. Opt. Soc. Am. B: Opt. Phys., 1995, 12, 2122 Search PubMed.
  26. X. Hou, S.-J. J. Tsai, J. X. Zhou, K. X. Yang, R. F. Lonardo and R. G. Michel, in Lasers in Analytical Atomic Spectroscopy, ed. Sneddon, J., Thiem, T. L., and Lee, Y.-I., VCH, New York, 1997 Search PubMed.
  27. A. I. Yuzefovsky, R. F. Lonardo and R. G. Michel, Anal. Chem., 1995, 67, 2246 CrossRef CAS.
  28. G. T. Wei, J. P. Dougherty, F. R. Preli, Jr. and R. G. Michel, J. Anal. At. Spectrom., 1990, 5, 249 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.