Stress relaxation and physical ageing in a blend of poly(styrene-co-acrylonitrile) and poly(methyl methacrylate)

(Note: The full text of this document is currently only available in the PDF Version )

John M. G. Cowie, Iain J. McEwen and Shigi Matsuda


Abstract

The structural recovery during physical ageing of poly(styrene-co-acrylonitrile), poly(methyl methacrylate) and of a 50/50 blend of these polymers has been examined by determining the stress relaxation modulus, G(t), over a range of temperatures below their respective glass transitions. Time–ageing time superposition of the modulus curves is possible and this gives sets of shift factors which reflect the changing mechanical response of the polymers and their blend during isothermal ageing. The ageing rate of poly(styrene-co-acrylonitrile) decreases quite markedly in the region of the glass transition. The rates for poly(methyl methacrylate) and for the blend also decrease on approaching the glass transition, but with a lesser temperature dependence. By scaling this behaviour to the glass transition the rate of ageing of the blend is found not to be intermediate between that of the components but to be similar to that of poly(methyl methacrylate). This may be explained by proposing that the two blend components respond differently to the applied stress field.


References

  1. L. C. E. Struik, Physical Ageing in Amorphous Polymers and Other Materials, Elsevier, New York, 1978 Search PubMed.
  2. M. Nishimota, H. Keskkula and D. R. Paul, Polymer, 1989, 30, 127 CrossRef.
  3. J. M. G. Cowie and D. Lath, Makromol. Chem., Makromol, Symp., 1988, 16, 103 Search PubMed.
  4. A. Weitz and B. Wunderlich, J. Polym. Sci., Poly. Phys., 1974, 12, 2473 Search PubMed.
  5. J. Mijovic and T. Ho, Polymer, 1993, 34, 3865 CAS.
  6. J. Perez, R. D. Calleja, J. L. G. Ribelles, M. M. Pradas and A. R. Greus, Makromol. Chem.-Macromol. Chem. Phys., 1991, 192, 2141 Search PubMed.
  7. J. J. Tribone, J. M. O'Reilly and J. Greener, Macromolecules, 1979, 19, 1732.
  8. J. M. G. Cowie and R. Ferguson, Polymer, 1993, 34, 2135 CAS.
  9. J. M. G. Cowie and R. Ferguson, Polym. Commun., 1995, 36, 4159 Search PubMed.
  10. A. Q. Tool, J. Am. Ceram. Soc., 1946, 29, 240 CAS.
  11. O. S. Narayanaswamy, J. Am. Ceram. Soc., 1971, 54, 491 CAS.
  12. G. W. Scherer, Relaxation in Glass and Composites, Wiley, New York, 1986 Search PubMed.
  13. J. M. Hutchinson, Prog. Polym. Sci., 1995, 20, 703 CrossRef CAS.
  14. I. M. Hodge, J. Non-Cryst. Solids, 1994, 169, 211 CrossRef CAS.
  15. J. D. Ferry, Viscoelastic Properties of Polymers, J. Wiley, New York, 1970, p. 313 Search PubMed.
  16. M. Cizmecioglu, R. F. Fedors, S. D. Hong and J. Moacanin, Polym. Eng. Sci., 1981, 21, 940 Search PubMed.
  17. J. G. Curro, R. R. Lagasse and R. Simha, J. Appl. Phys., 1981, 52, 5892 CrossRef CAS.
  18. G. B. McKenna, Y. Leterrier and C. R. Schultheisz, Polym. Eng. Sci., 1995, 35, 403 Search PubMed.
  19. J. M. G. Cowie, R. Ferguson, S. Harris and I. J. McEwen, Polymer, 1998, 39, 4393 CrossRef CAS.
  20. J. M. M. Dueñas, A. V. Garayo, F. R. Colomer, J. M. Estellés, J. L. G. Ribelles and M. M. Pradas, J. Polym. Sci. B., 1997, 35, 2201 CrossRef.
  21. G. Adams and J. H. Gibbs, J. Chem. Phys., 1965, 43, 139 CrossRef CAS.
  22. A. Brunacci, J. M. G. Cowie, R. Ferguson and I. J. McEwen, Polymer, 1997, 38, 3263 CrossRef CAS.
  23. J. M. G. Cowie, S. Harris and I. J. McEwen, J. Polym. Sci. B., 1977, 35, 1107 CrossRef CAS.
  24. J. Mijovic, T. Ho and T. K. Kwei, Polym. Eng. Sci., 1989, 22, 1604 Search PubMed.
  25. T. Ho, J. Mijovic and C. Lee, Polymer, 1991, 32, 619 CAS.
  26. G. W. Chang, A. M. Jamieson, Z. B. Yu and J. D. McGervey, J. Appl. Polym. Sci., 1997, 63, 483 CrossRef CAS.
  27. A. Brunacci, J. M. G. Cowie and I. J. McEwen, J. Chem. Soc., Faraday Trans., 1998, 94, 1105 RSC.
  28. A. K. Oultache, Y. Zhao, B. Jasse and L. Monnerie, Polymer, 1994, 35, 681 CAS.
  29. M. J. Richardson and N. G. Saville, Polymer, 1977, 18, 413 CAS.
  30. H. C. Booij and J. H. M. Palmen, Polym. Eng. Sci., 1978, 18, 78 Search PubMed.
  31. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: The Art of Scientific Programming, Cambridge University Press, Cambridge, 1986 Search PubMed.
  32. S. Matsuoka, G. Williams, G. E. Johnson, E. W. Anderson and T. Furukawa, Macromolecules, 1985, 18, 2652 CrossRef CAS.
  33. R. W. Rendell, J. J. Aklonis, K. L. Ngai and G. R. Fong, Macromolecules, 1987, 20, 1070 CrossRef CAS.
  34. R. Simha, J. G. Curro and R. E. Robertson, Polym. Sci. Eng., 1984, 24, 1071 Search PubMed.
  35. N. G. McCrum, Plastics Rubber and Composites Processing and Applications, 1992, 18, 181 Search PubMed.
  36. J. S. Royal, J. G. Victor and J. M. Torkelson, Macromolecules, 1992, 25, 729 CrossRef CAS.
  37. The reader may care to refer to the first few paragraphs of Section 14.5 in ref. 32 for a concise but compelling description of the realities facing an experimenter.
  38. G. Glockner, V. Albrecht, F. Francuskiewicz and D. Ilchmann, Angew. Makromol. Chem., 1985, 130, 41 CrossRef.
  39. S. Wu, Polymer, 1987, 28, 1144 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.