Formation of hydrated electron and BrO3 radical from laser photolysis of BrO3- aqueous solution

(Note: The full text of this document is currently only available in the PDF Version )

Zhihua Zuo and Yosuke Katsumura


Abstract

Hydrated electron, as well as BrO3 radical, was observed as one of the products from the laser photolysis of bromate (BrO3-) aqueous solution, with an initial quantum yield of (8.0±0.8)×10-2 determined. The hydrated electron produced can be scavenged rapidly by O2, OH radical and the parent compound BrO3-. The rate constant for the reaction of eaq- with BrO3- was determined to be 3.0×109 d mol-1 s-1 at ionic strength I=0. The BrO3 radical was observed to have an absorption peak at 315 nm with a molar absorption coefficient of ∽8×102 d mol-1 cm-1. In addition, BrO3 could be also produced from the electron transfer reaction of the sulfate radical (SO4-) with BrO3-. The radical prefers to dissociate rapidly to form the BrO radical (at a rate of >2.0×105 s-1). It was also suggested that some of the BrO came from direct photolysis of BrO3- solution. Quantum yields of BrO2 and O from the photolysis of BrO3- were determined to be 0.12±0.01 and (7.4±0.6)×10-3, respectively.


References

  1. L. Farkas and F. S. Klein, J. Chem. Phys., 1948, 16, 886 CAS.
  2. N. K. Bridge and M. S. Matheson, J. Phys. Chem., 1960, 64, 1280 CAS.
  3. G. W. Swenson, E. F. Zwicker and L. I. Grossweiner, Science, 1963, 141, 1042 CAS.
  4. A. Treinin and M. Yaacobi, J. Phys. Chem., 1964, 68, 2487 CAS.
  5. O. Amichai and A. Treinin, Chem. Phys. Lett., 1969, 3, 611 CrossRef CAS.
  6. O. Amichai, G. Czapski and A. Treinin, Isr. J. Chem., 1969, 7, 351 CAS.
  7. F. Barat, L. Gilles, B. Hickel and J. Sutton, J. Chem. Soc., Chem. Commun., 1969, 1485 RSC.
  8. O. Amichai and A. Treinin, J. Phys. Chem., 1970, 74, 20.
  9. F. Barat, L. Gilles, B. Hickel and B. Lesigne, J. Phys. Chem., 1971, 75, 2177 CrossRef CAS.
  10. U. K. Kläning, K. Sehested and T. Wolff, J. Chem. Soc., Faraday Trans., 1984, 80, 2969 RSC.
  11. U. K. Kläning and K. Sehested, J. Phys. Chem., 1991, 95, 740 CrossRef CAS.
  12. M. Anbar and E. J. Hart, J. Phys. Chem., 1965, 69, 973 CrossRef CAS.
  13. G. V. Buxton and F. S. Dainton, Proc. R. Soc. London, Ser. A., 1968, 304, 427 CAS.
  14. B. Cercek, Nature (London), 1969, 223, 491 CAS.
  15. E. Peled and G. Czapski, J. Phys. Chem., 1970, 74, 2903 CrossRef CAS.
  16. Z. Zuo, Y. Katsumura, K. Ueda and K. Ishigure, J. Chem. Soc., Faraday Trans., 1997, 93, 533 RSC.
  17. G. V. Buxton and W. K. Wilmarth, J. Phys. Chem., 1963, 67, 2835 CAS.
  18. B. C. Faust and J. Hoigne, J. Atmos. Environ. A, 1990, 24, 79 Search PubMed.
  19. R. Zellner, M. Exner and H. Herrmann, J. Atmos. Chem., 1990, 10, 411 CrossRef CAS.
  20. S. O. Mielesa, B. D. Michael and E. J. Hart, J. Phys. Chem., 1976, 80, 2482 CrossRef.
  21. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513 CAS.
  22. M. S. Matheson and J. Rabani, J. Phys. Chem., 1965, 69, 1324 CAS.
  23. C. L. Bolton, K. N. Jha and C. R. Freeman, Can. J. Chem., 1976, 54, 1497.
  24. C. H. Check and V. J. Linnenbom, J. Phys. Chem., 1963, 67, 1856.
  25. J. R. Byberg and B. S. Kirkegaard, J. Phys. Chem., 1974, 60, 2594 CrossRef CAS.
  26. W. R. Haag and J. Hoigne, Environ. Sci. Technol., 1983, 17, 261 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.