Segregation of molecules in binary solvent mixtures without H bonds. A quantitative treatment based on the theory of mobile order and disorder

(Note: The full text of this document is currently only available in the PDF Version )

Pierre L. Huyskens, Marie-Claire Haulait-Pirson, Peter Vandevyvere, Katarine Seghers and The′rèse Zeegers-Huyskens


Abstract

This treatment applies to binary liquid mixtures of volume fractions φ1 and φ2, but only in the absence of H bonding or ionisation. An environmental layer is defined around the individual volume v1 of a given molecule 1. At a given instant, a fraction α11 of this layer contains atoms belonging to molecules of the same kind as 1 whereas the complementary fraction α12 contains atoms of molecules of kind 2. Due to the spontaneous displacements of v1 in the liquid, α11 fluctuates between the extreme values 1 and 0. However, after a long time t, the time fraction defined by the integral γ11≡(1/t)∫0tα11 dt no longer depends on the time and has the same value for all the molecules of the same kind. The four time fractions γ11 and γ12, γ22, γ21 (defined in a similar way) are characteristic of the equilibrium. They are directly related to the partition of the cohesive energy in 11, 22 and 12 interactions, ξ1111φ1; ξ2222φ2; ξ12=2γ12φ1=2γ21φ2. Random mixing occurs when γ11rand21rand1 and γ12rand22rand2. In this case (ξ12rand)2/(ξ11randξ22rand)=4. However, in most cases, homogeneous environments are preferred and (ξ12)2/(ξ11ξ22)=4K. The "‘environmental’' constant K is then smaller than unity. K is related to the molar volumes V1 and V2 and to the differences in standard Gibbs energies between the pure state and the state of infinite dilution in the other liquid. K can be estimated by the geometric mean rule. For liquids of similar polarities, K does not differ markedly from unity, but for mixtures of polar liquids and liquid alkanes, K is significantly smaller and an important segregation is predicted. Using the experimental solubilities of solid n-alkanes in pure solvents, the equations predict the solubilities in mixtures of the two solvents without any adapted parameter. The predicted values agree in this case, considerably better with the experimental ones than do those derived from the hypothesis of random mixing. The validity of time fractions thermodynamics has thus been experimentally verified.


References

  1. P. L. Huyskens and M. C. Haulait-Pirson, J. Mol. Liq., 1985, 31, 153 CrossRef CAS.
  2. M. C. Haulait-Pirson, G. Huys and E. Vanstraelen, Ind. Eng. Chem. Res., 1987, 26, 447 CrossRef CAS.
  3. P. L. Huyskens, M. C. Haulait-Pirson, G. G. Siegel and F. Kapuku, J. Phys. Chem., 1988, 92, 6841 CrossRef CAS.
  4. P. L. Huyskens, J. Mol. Struct., 1992, 270, 197 CrossRef CAS.
  5. P. L. Huyskens, D. P. Huyskens and G. G. Siegel, J. Mol. Liq., 1995, 64, 283 CrossRef CAS.
  6. P. L. Huyskens, J. Mol. Liq., 1998, 75, 261 CrossRef CAS.
  7. A. Eucken, Die Theorie der Strahlung und der Quanten, Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft 30 Oktober bis 3 November 1911, Halle, 1914 Search PubMed.
  8. A. Pais, “Subtle is the Lord” The Science and the Life of Albert Einstein, Oxford University Press, Oxford, 1982 Search PubMed.
  9. P. Ruelle, C. Rey-Mermet, M. Buchmann, N. T. Hô, U. Kesselring and P. L. Huyskens, Pharm. Res., 1991, 8, 840 CrossRef CAS.
  10. P. Ruelle, M. Buchmann, N. T. Hô and U. Kesselring, Comput. Aided Mol. Res., 1992, 6, 266 Search PubMed.
  11. P. Ruelle, M. Buchmann, N. T. Hô and U. W. Kesselring, Pharm. Res., 1992, 9, 788 CrossRef CAS.
  12. P. Ruelle, M. Buchmann, N. T. Hô and U. W. Kesselring, Environ. Sci. Technol., 1993, 27, 266 CAS.
  13. P. Ruelle, M. Buchmann and U. W. Kesselring, J. Pharm. Sci., 1994, 83, 396 CAS.
  14. P. Ruelle and U. W. Kesselring, J. Mol. Liq., 1995, 67, 81 CrossRef CAS.
  15. P. Ruelle and U. Kesselring, Chemosphere, 1997, 34, 275 CrossRef CAS.
  16. J. W. E. Acree, Fluid Phase Equilib., 1994, 92, 19 CrossRef.
  17. J. W. E. Acree, A. Zvaigzne and S. A. Tucker, Fluid Phase Equilib., 1994, 92, 1 CrossRef.
  18. J. W. E. Acree, A. I. Zvaigzne and S. A. Tucker, Fluid Phase Equilib., 1994, 92, 233 CrossRef.
  19. A. Zvaigzne, J. R. Powell, J. W. E. Acree and S. W. Campbell, Fluid Phase Equilib., 1996, 121, 1 CrossRef.
  20. S. Pandey, J. R. Powell, M. E. R. McHale, A. S. Kauppila and J. W. E. Acree, Fluid Phase Equilib., 1996, 123, 29 CrossRef CAS.
  21. J. R. Powell, M. E. R. McHale, A. S. Kaupilla, J. W. E. Acree and S. W. Campbell, J. Solution Chem., 1996, 25, 1001 CAS.
  22. J. R. Powell, M. E. R. McHale, A. S. Kauppila, J. W. E. Acree, P. H. Flanders, V. G. Varanasi and S. W. Campbell, Fluid Phase Equilib., 1997, 134, 185 CrossRef CAS.
  23. E. A. Guggenheim, Proc. R. Soc. A, 1935, 148, 304 Search PubMed.
  24. G. S. Rushbrooke, Proc. R. Soc. A, 1938, 166, 296 Search PubMed.
  25. H. Renon, C. R. Acad. Sci. B, 1974, 278, 147 Search PubMed.
  26. G. Hoheisel and F. Kohler, Fluid Phase Equilib., 1984, 16, 13 CrossRef.
  27. P. L. Huyskens, J. Mol. Struct., 1992, 274, 223 CrossRef CAS.
  28. P. L. Huyskens and M. C. Haulait-Pirson, J. Mol. Liq., 1985, 31, 135 CrossRef CAS.
  29. P. L. Flory, J. Chem. Phys., 1942, 10, 51 CrossRef CAS.
  30. M. L. Huggins, J. Phys. Chem., 1942, 46, 151 CrossRef CAS.
  31. A. Pfennig, Macromol. Theory Simul., 1994, 3, 389 CAS.
  32. M. D. Berthelot, Compt. Rend., 1898, 126, 1703 Search PubMed.
  33. J. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, Dover Publications, New York, 1964 Search PubMed.
  34. G. Scatchard, Chem. Rev., 1931, 8, 321 CrossRef CAS.
  35. J. Hildebrand and S. E. Wood, J. Chem. Phys., 1933, 1, 817 CAS.
  36. P. L. Huyskens, K. Seghers and H. Morissen, Fluid Phase Equilib., 1994, 96, 1 CrossRef CAS.
  37. P. A. Small, J. Appl. Chem., 1953, 3, 71 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.