Abinitio study of formazan and 3-nitroformazan

(Note: The full text of this document is currently only available in the PDF Version )

Giuseppe Buemi, Felice Zuccarello, Ponnambalam Venuvanalingam, Marimuthu Ramalingam and S. Salai Cheettu Ammal


Abstract

Formazan and 3-nitroformazan have been investigated at abinitio level (MP2/6-31G** and B3LYP/6-31G**) in all their possible conformations, for studying the various possibilities of intramolecular hydrogen bonding formation. The trans-syn-s-cis (TSSC), known also as yellowform, has been found to be the most stable conformer (at least in the gas phase) in both compounds. This particular structure is strongly stabilized by a N–H···N hydrogen bridge, which gives rise to a hexatomic chelate ring, with the possibility of a proton transfer process.This closely resembles that of malondialdehyde, previously studied, in the evolution of the potential energy shape but with a greater barrier height. Various approaches for obtaining a quantitative estimate of the energy of the hydrogen bridges are discussed. The electronic structures of the most favoured TSSC, TSST (trans-syn-s-trans) and TAST (trans-anti-s-trans) conformations of formazan have been compared with those of the corresponding forms of 1,5-diphenylformazan, in order to account for the UV spectra available in the literature and the different colours exhibited by the molecule on passing from one conformation to another.


References

  1. F. Hibbert and J. Emsley, in Hydrogen Bonding and Chemical Reactivity, Advances in Physical Organic Chemistry, Academic Press, London, 1990, vol. 26, p. 255 Search PubMed.
  2. P. S. Stewart, T. Griebe and R. Srinivasan, Appl. Environ. Microbiol., 1994, 60, 1690 CAS.
  3. F. P. Yu and G. A. McFeters, Appl. Environ. Microbiol., 1994, 60, 2462 CAS.
  4. H. Hiura and H. Takahashi, J. Mol. Struct., 1989, 219, 221 CrossRef.
  5. H. Hiura and H. Takahashi, J. Mol. Struct., 1989, 212, 235 CrossRef CAS.
  6. G. R. Burns, C. W. Cunningham and V. McKee, J. Chem. Soc., Perkin Trans. 2, 1988, 1275 RSC.
  7. C. W. Cunningham, G. R. Burns and V. McKee, J. Chem. Soc., Perkin Trans. 2, 1989, 1429 RSC.
  8. H. Langbein, J. Prakt. Chem., 1979, 321, 655 CAS.
  9. U. W. Grummt and H. Langbein, J. Photochem., 1989, 15, 329 CrossRef.
  10. J. W. Lewis and C. Sandorfy, Can. J. Chem., 1983, 61, 809 CAS.
  11. D. Jerchel and R. Khun, Chem. Ber., 1949, 82, 525.
  12. I. Hauser, D. Jerchel and R. Khun, Chem. Ber., 1949, 82, 515.
  13. R. Khun and H. M. Weiz, Chem. Ber., 1953, 86, 1199.
  14. G. N. Szabo, Pure Appl. Chem., 1980, 52, 1565.
  15. M. Ramalingam, in Theoretical Investigations of Conformation, Electronic Structure and Hydrogen Bonding in β-Dicarbonyls and Analogous Heteroconjugated Systems, PhD Thesis, Bharathidasan University, Tiruchirapalli, India, 1995 Search PubMed.
  16. Gaussian92, Revision B, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian Inc., Pittsburgh, 1992.
  17. Gaussian94, Revision C.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanof, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defree, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, Gaussian Inc., Pittsburgh PA, 1995.
  18. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  19. A. D. Becke, J. Chem. Phys., 1993, 98, 5468.
  20. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  21. J. B. Foresman and E. Frisch, in Exploring Chemistry with Electronic Structure Methods, 2nd edn., Gaussian Inc., Pittsburgh, PA, 1996 Search PubMed.
  22. It is noteworth that some of the more stable non-planar local minima are not reached if optimization starts from a less stable full planar geometry (i.e., as experienced also in other compounds, in some cases the program is not able to run straight into the correct minimization direction if the starting torsion angle is zero).
  23. A. Bondi, J. Phys. Chem., 1964, 68, 441 CrossRef CAS.
  24. G. Buemi and F. Zuccarello, J. Chem. Soc., Faraday Trans., 1996, 92, 347 RSC.
  25. G. Buemi and F. Zuccarello, Electr. J. Theor. Chem., 1997, 2, 118 Search PubMed.
  26. G. Buemi and F. Zuccarello, Electr. J. Theor. Chem., 1997, 2, 302 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.