Chemisorption of ethanol at Pt(111) and Pt(111)–O surfaces

(Note: The full text of this document is currently only available in the PDF Version )

M K. Rajumon, M W. Roberts, F Wang and P B. Wells


Abstract

The chemisorption of ethanol at Pt(111) and Pt(111)–O surfaces has been studied using X-ray photoelectron (XP) and UV photoelectron (UP) spectroscopies. At atomically clean Pt(111) at 295 K only chemisorbed hydrocarbon species are present, identical spectra being observed with propene chemisorption. An oxygen-modified Pt(111) surface (ϑ0=0.1) is also reactive but, in this case, both hydrocarbon and oxygenated species are present at 295 K. Chemisorption of acetaldehyde indicates that decarbonylation is facile, lending support for the step-wise mechanism proposed with ethanol. Studies at low temperature (200 K) also support a step-wise mechanism with an oxygenated species, possibly an ethoxide (C2H5O), being the intermediate. The presence of surface carbon at an otherwise clean Pt(111) surface leads to similar reactivity to C2H5OH as does Pt(111)–O.


References

  1. A. Baiker and H.-U. Blaser, in Handbook of Heterogeneous Catalysis, ed. G. Ertl, H. Knozinger and J. Weitkamp, VCH, Weinheim, 1997, vol. 5, p. 2422 Search PubMed.
  2. K. E. Simons, P. A. Meheux, S. P. Griffiths, I. M. Sutherland, P. Johnston, P. B. Wells, A. F. Carley, M. K. Rajuman, M. W. Roberts and A. Ibbotson, Recl. Trav. Chim. Pays-Bas, 1994, 113, 465 CAS.
  3. (a) A. F. Carley, M. K. Rajumon, M. W. Roberts and P. B. Wells, J. Chem. Soc., Faraday Trans., 1995, 91, 2167 RSC; (b) T. S. Amorelli, A. F. Carley, M. K. Rajumon, M. W. Roberts and P. B. Wells, Surf. Sci., 1994, 315, L990 CrossRef CAS; (c) A. F. Carley, P. R. Chalker, J. C. Riviere and M. W. Roberts, J. Chem. Soc. Faraday Trans I, 1987, 83, 351 RSC.
  4. S. P. Griffiths, PhD thesis, University of Hull, 1996.
  5. P. B. Wells and A. G. Wikinson, Top. Catal., 1998, 5, 39 CrossRef CAS.
  6. J. A. Slipszenko, S. P. Griffiths, P. Johnston, K. E. Simons, W. A. H. Vermeer and P. B. Wells, J. Catal., 1998, 178, in press Search PubMed.
  7. P. Gao, C.-H. Lin, C. Shannon, G. N. Salaita, J. H. White, S. A. Chaffins and A. T. Hubbard, Langmuir, 1991, 7, 1515 CrossRef CAS.
  8. J. F. E. Gootzen, W. Visscher and J. A. R. van Veen, Langmuir, 1996, 12, 5076 CrossRef CAS.
  9. J. A. A. van den Tillaart, B. F. M. Kuster and G. B. Marin, Appl. Catal. A, 1994, 120, 127 CrossRef CAS.
  10. J. W. Shin, W. J. Tornquist, C. Korzeniewski and C. S. Hoaglund, Surf. Sci., 1996, 364, 122 CrossRef CAS.
  11. B. A. Sexton, K. D. Rendulie and A. E. Hughes, Surf. Sci., 1982, 121, 181 CrossRef CAS.
  12. J. Wang and R. I. Masel, Surf. Sci., 1991, 243, 199 CrossRef CAS.
  13. J. Wang and R. I. Masel, J. Catal., 1990, 126, 519 CAS.
  14. S. D. Jackson, M. B. T. Keegan, G. D. McLellan, P. A. Meheux, R. B. Moyes, G. Webb, P. B. Wells, R. Whyman and J. Willis, in Preparation and Characterisation of Catalysts, ed. G. Poncelet et al., Elsevier, Amsterdam, 1991, vol. V, p. 135 Search PubMed.
  15. G. Webb, Catal. Today, 1990, 7, 139 CrossRef CAS.
  16. G. F. Berndt, S. J. Thomson and G. Webb, J. Chem. Soc. Faraday Trans. 1, 1983, 79, 195 RSC.
  17. G. A. Somorjai and F. Zaera, J. Phys. Chem., 1982, 86, 3070 CrossRef CAS.
  18. H. Ibach, M. A. Vannice and W. Erley, Surf. Sci., 1991, 254, 12 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.