Abinitio simulation of ‘liquid’ water on a Pd surface

(Note: The full text of this document is currently only available in the PDF Version )

Armin Klesing, Detlef Labrenz and Rutger A. van Santen


Abstract

We report on the application of the Car–Parrinello molecular dynamics method (CPMD) to the interaction of water ensembles with Pd(100) model surfaces. Periodic Pd50O8 and Pd18O2 slabs covered with nine and 18 water molecules, respectively, were employed to analyze the balance of adsorbate–adsorbate and adsorbate–surface interactions as a function of water ensemble size, in the limiting cases of a clean surface and high surface coverage with atomic oxygen. Our simulations suggest that ‘liquid’ water molecules are distributed, for the most part, randomly on Pd(100) at 300 K, with a characteristic intermolecular distance distribution in distinct regions of the water/metal interface. The structure of low-mobility local water clusters which stay close to the surface resembles that of earlier proposals based on thin film experiments. In addition, our results corroborate the experimental finding that a high surface coverage with oxygen reduces the water–Pd interaction compared to that on the clean solid.


References

  1. R. A. van Santen and J. W. Niemantsverdriet, Chemical Kinetics and Catalysis, Plenum Press, New York, 1995 Search PubMed.
  2. R. A. van Santen, Theoretical Heterogeneous Catalysis, World Scientific Lecture and Course Notes in Chemistry Vol. 5, World Scientific, Singapore, 1991 Search PubMed.
  3. (a) Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, ed. G. F. Froment and K. C. Waugh, Proceedings of the International Symposium, Antwerp, September 15–17, 1997, Elsevier, Amsterdam, 1997 Search PubMed; (b) M. Neurock, ibid., pp. 3–34 Search PubMed.
  4. S. Yoshida, S. Sakaki and H. Kobayashi, Electronic Processes in Catalysis, A Quantum Chemical Approach to Catalysis, VCH, Weinheim, 1994 Search PubMed.
  5. T. Lankau, I. N. Cooper and K. Nagorny, Bunsentagung 1998 Münster, 21–23 Mai 1998, Poster 131, 132 Search PubMed.
  6. G. Estiú, S. A. Maluendes, E. A. Castro and A. J. Arvia, J. Phys. Chem., 1988, 92, 2512 CrossRef CAS.
  7. C. W. Bauschlicher, Jr., Chem. Phys. Lett., 1987, 142, 71 CrossRef.
  8. M. W. Ribarsky, W. D. Luedtke and U. Landman, Phys. Rev. B, 1985, 32, 1430 CrossRef CAS.
  9. S. Holloway and K. H. Bennemann, Surf. Sci., 1980, 101, 327 CrossRef CAS.
  10. E. J. Meijer and M. Sprik, J. Chem. Phys., 1996, 105, 8684 CrossRef CAS.
  11. M. Sprik, J. Hutter and M. Parrinello, J. Chem. Phys., 1996, 105, 1142 CrossRef CAS and references therein.
  12. K. Laasonen, M. Sprik, M. Parrinello and R. Car, J. Chem. Phys., 1993, 99, 9080 CrossRef CAS.
  13. G. Nagy, K. Heinzinger and E. Spohr, Faraday Discuss., 1992, 94, 307 Search PubMed and references therein.
  14. G. Nagy and K. Heinzinger, J. Electroanal. Chem., 1992, 327, 25 CrossRef CAS.
  15. P. Bopp, G. Jancsó and K. Heinzinger, Chem. Phys. Lett., 1983, 98, 129 CrossRef CAS.
  16. W. L. Jorgensen, J. Chandrasekhar, J. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  17. R. Car and M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471 CrossRef CAS.
  18. J. M. Heras, G. Estiú and L. Viscido, Appl. Surf. Sci., 1997, 108, 455 CrossRef CAS.
  19. R. Brosseau, T. H. Ellis and H. Wang, Chem. Phys. Lett., 1991, 177, 118 CrossRef CAS.
  20. R. Brosseau, T. H. Ellis, M. Morin and H. Wang, J. Electron Spectrosc. Relat. Phenom., 1990, 54/55, 659 CrossRef.
  21. J. W. He and P. R. Norton, Surf. Sci., 1990, 238, 95 CrossRef CAS.
  22. CPMD version 3.0 written by J. Hutter, Max-Planck-Institut für Festkörperforschung, Stuttgart 1997(unpublished), with the help of the group for numerical intensive computations of IBM Research Laboratory Zürich and the Abteilung Parrinello of MPI Stuttgart.
  23. N. Troullier and J. Martins, Phys. Rev. B, 1991, 43, 1993 CrossRef CAS.
  24. A. D. Becke, Phys. Rev. A., 1988, 38, 3098 CrossRef CAS.
  25. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  26. DGauss 4.0, Oxford Molecular Group 1997.
  27. A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397 CrossRef CAS.
  28. B. Silvi and A. Savin, Nature (London), 1994, 371, 683 CrossRef CAS.
  29. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990 Search PubMed.
  30. E. Shustorovich, Surf. Sci. Rep., 1986, 6, 1 CrossRef CAS.
  31. W. Langel and M. Parrinello, J. Chem. Phys., 1995, 103, 3240 CrossRef CAS.
  32. K. Bange, T. E. Madey, J. K. Sass and E. M. Stuve, Surf. Sci., 1987, 183, 334 CAS.
  33. D. L. Doering and T. E. Madey, Surf. Sci., 1982, 123, 305 CrossRef CAS.
  34. N. Bjerrum, Science, 1952, 115, 385 CAS.
  35. E. Spohr and K. Heinzinger, Ber. Bunsen-Ges. Phys. Chem., 1988, 92, 1358 Search PubMed.
  36. T. Zambelli, J. Wintterlin, J. Trost and G. Ertl, Science, 1996, 273, 1688 CAS and references therein.
  37. M. W. Finnis, C. Kruse and U. Schönberger, Nanostruct. Mater., 1995, 6, 145 CrossRef CAS.
  38. P. W. Tasker, J. Chem. Soc., Faraday Trans., 1990, 86, 1311 RSC.
  39. Xu Yin-Sheng and H. Xiao-Le, J. Mol. Catal., 1985, 33, 179 CrossRef.
  40. A. Stirling, I. Gunji, A. Endou, Y. Oumi, M. Kubo and A. Miyamoto, J. Chem. Soc., Faraday Trans., 1997, 93, 1175 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.