Structural conformation of lysozyme layers at the air/water interface studied by neutron reflection

(Note: The full text of this document is currently only available in the PDF Version )

J. R. Lu, T. J. Su, R. K. Thomas, J. Penfold and J. Webster


Abstract

The adsorption of chicken egg white lysozyme at the air/water interface has been studied by specular neutron reflection. The variation of the total thickness of the lysozyme layer at the surface of water under varying solution conditions has been determined. The use of mixed H2O and D2O allowed the determination of the extent of immersion of the layer in water at all concentrations. The measured layer thickness combined with the globular dimensions of lysozyme suggests that the adsorbed lysozyme molecules retain their globular structure with no significant denaturation. Measurements were made over a lysozyme concentration range of 9×10-4 g dm-3 to 4 g dm-3 at pH 7 and at an ionic strength of 0.02 M. The thickness of the layer was determined by measuring neutron reflectivities in null reflecting water (NRW) where the signal is only from the adsorbed protein layer. Below 0.1 g dm-3 the surface coverage increases with bulk concentration but the thickness of the layer is constant at 30±3 Å, suggesting that lysozyme is adsorbed sideways-on. As the bulk concentration increases, the layer thickness gradually increases to a value of 47±3 Å2 at a bulk concentration of 1 g dm-3, suggesting that the molecules switch from sideways-on to longways-on orientations. The area per molecule at 1 g dm-3 was found to be 950±50 Å2 which is close to the limit of 30×30 Å2 for a saturated layer of longways-on molecules. The extent of mixing of the layer with water was determined directly by measuring reflectivity profiles in mixed H2O and D2O. A two layer model was found to be appropriate with an upper layer in air and a lower layer fully immersed in water. The thickness of the layer in air was found to vary from 15±5 Åat the lowest bulk concentration to 9±3 Åat the highest concentration studied. The results show that as the total layer thickness increases with bulk concentration the fraction of the layer immersed in water increases from 50 to 85%. At the highest concentration of 4 g dm-3 the adsorbed layer is better described by a two layer model consisting of a close packed top layer of thickness 47±3 Åand a loosely packed sublayer of 30±3 Å.


References

  1. W. T. Heller, K. He, S. J. Ludtke, T. A. Harroun and H. W. Huang, Biophys. J., 1997, 73, 239 CrossRef CAS.
  2. E. H. Ellison and F. J. Castellino, Biophys. J., 1997, 72, 2605 CrossRef CAS.
  3. K. He, S. J. Ludtke, D. I. Worcester and H. W. Huang, Biophys. J., 1996, 70, 2659 CrossRef CAS.
  4. C. A. Haynes and W. Norde, Colloid Surf. B, 1994, 2, 517 CrossRef CAS.
  5. T. A. Horbett and J. L. Brash, Protein at Interfaces II, ACS Symp. Ser. 602, Washington DC, 1995 Search PubMed.
  6. P. J. Atkinson, E. Dickinson, D. S. Horne and R. M. Richardson, J. Chem. Soc., Faraday Trans., 1995, 91, 2847 RSC.
  7. J. Leaver and D. G. Dalgleish, Biochim. Biophys. Acta, 1990, 1041, 217 CrossRef CAS.
  8. D. E. Graham and M. C. Phillips, J. Colloid Interface Sci., 1979, 70, 403 CrossRef.
  9. G. R. Bell, S. Manning-Benson and C. D. Bain, J. Phys. Chem. B, 1998, 102, 218 CrossRef CAS.
  10. J. Penfold, R. M. Richardson, A. Zarbakhsh, J. W. P. Webster, D. G. Bucknall, A. R. Rennie, R. A. L. Jones, T. Cosgrove, R. K. Thomas, J. S. Higgins, P. D. I. Fletcher, E. J. Dickinson, S. J. Roser, I. A. McLure, A. R. Hillman, R. W. Richards, E. J. Staples, A. N. Burgess, E. A. Simister and J. W. White, J. Chem. Soc., Faraday Trans., 1997, 93, 3899 RSC.
  11. E. M. Lee and R. K. Thomas, Physica B, 1989, 156, 525 CrossRef.
  12. J. R. Lu, E. M. Lee and R. K. Thomas, Acta Crystallogr., Sect. A, 1996, 52, 11 CrossRef.
  13. M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1970 Search PubMed.
  14. J. Lekner, Theory of Reflection, Nijhoff, Dordrecht, 1987 Search PubMed.
  15. S. E. Radford, M. Buck, K. D. Topping, C. M. Dobson and P. A. Evans, Proteins: Struct., Funct., Genet., 1992, 14, 237 Search PubMed.
  16. T. Peters, Adv. Protein Chem., 1985, 37, 161 Search PubMed.
  17. J. R. Lu, T. J. Su, R. K. Thomas, J. Penfold and R. W. Richards, Polymer, 1996, 37, 109 CrossRef CAS.
  18. J. R. Lu, T. J. Su, P. N. Thirtle, R. K. Thomas, A. R. Rennie and R. Cubitt, J. Colloid Interface Sci., 1998, in press Search PubMed.
  19. D. K. Schwartz, M. L. Schlossman, G. H. Kawmoto, G. J. Kellogg, P. S. Pershan and B. M. Ocko, Phys. Rev. A, 1990, 41, 5687 CrossRef.
  20. J. R. Lu, E. A. Simister, R. K. Thomas and J. Penfold, J. Phys. Condens. Matter, 1994, 6, A403 CrossRef CAS.
  21. P. Suttiprasit, V. Krisdhasima and J. McGuire, J. Colloid Interface Sci., 1992, 154, 316 CrossRef CAS.
  22. B. C. Tripp, J. J. Magda and J. D. Andrade, J. Colloid Interface Sci., 1995, 173, 16 CrossRef CAS.
  23. J. R. Lu, T. J. Su, R. K. Thomas, J. Penfold and J. Webster, J. Phys. Chem. B., 1998, in press Search PubMed.
  24. J. Wang and J. McGuire, J. Colloid Interface Sci., 1997, 185, 317 CrossRef CAS.
  25. Z. Li, M. W. Zhao, J. Quinn, M. H. Rafailovich, J. Sokolov, R. B. Lennox, A. Eisenberg, X. Z. Wu, M. W. Kim, S. K. Sinha and M. Tolan, Langmuir, 1995, 11, 4785 CrossRef CAS.
  26. T. J. Su, D. A. Styrkas, R. K. Thomas, F. L. Baines, N. C. Billingham and S. P. Armes, Macromolecules, 1997, 129, 6892.
  27. D. Voet and J. G. Voet, Biochemistry, Wiley, New York, 1990 Search PubMed.
  28. V. F. Sears, Neutron Optics, Oxford University Press, 1989 Search PubMed.
  29. T. Chalikian, M. Totrov, R. Abagyan and K. Breslauer, J. Mol. Biol., 1996, 260, 588 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.