Solution thermodynamics of geometrical isomers of pyridino calix(4)arenes and their interaction with the silver cation. The X-ray structure of a 1:1 complex of silver perchlorate and acetonitrile with 5,11,17,23-tetra-tert-butyl-[25,26,27,28-tetrakis(2- pyridylmethyl)oxy]calix(4)arene

(Note: The full text of this document is currently only available in the PDF Version )

Angela F. Danil de Namor, Oscar E. Piro, Lupe E. Pulcha Salazar, Adolfo F. Aguilar-Cornejo, Nawar Al-Rawi, Eduardo E. Castellano and Felix J. Sueros Velarde


Abstract

The solubility and derived standard Gibbs energies of solution of three geometrical isomers of pyridinocalix(4)arenes {5,11,17,23-tert-butyl-[25,26,27,28-tetrakis-(n-pyridylmethyl) oxy]-p-tert-butylcalix(4)arene, with n=2, 3, 4} in a variety of solvents at 298.15 K are reported. Solvation effects are assessed from the standard transfer Gibbs energies of these ligands, using acetonitrile as the reference solvent. For the 2-pyridyl derivative in alcohols as the aliphatic chain length of the alcohol increases, the extent of solvent–ligand interaction increases, whereas for the 3- and the 4-pyridyl derivatives the opposite is observed. The protonation constants for the 4-pyridyl derivative in methanol at 298.15 K are reported. The results, compared with corresponding values for the 3-pyridyl derivative show that the basic character of these ligands follows the sequence; 4-pyridyl>3-pyridyl>2-pyridyl calix(4)arene. Thermodynamic parameters for the complexation of these macrocycles (2 and 4-pyridyl derivatives) and the silver cation in acetonitrile show that, as the distance between the phenolic oxygens and the pyridyl nitrogens increases, the strength of complexation decreases. Thermodynamic data for the complexation of silver and the 2-pyridylcalix(4)arene derivative are compared with corresponding values for sodium and this ligand in the same solvent. The results suggest that the 2-pyridyl derivative provides phenolic oxygens and pyridyl nitrogens as the active sites for complexation with silver. This is corroborated by 1H NMR measurements of this ligand and silver in CD3CN at 298 K.

The crystal structure of a 1:1 monoacetonitrile and silver complex of the 2-pyridyl derivative with perchlorate as the counter-ion has been determined from XRD data. The substance crystallises in the tetragonal space group P4/n with a=15.580(2) Å, c=13.082(2) Å, and z=2. The macrocycle is sited on a fourfold symmetry axis and consists of two conical parts, one hydrophobic, filled with an acetonitrile molecule, the other hydrophilic, encapsulating the Ag+ ion through the ethereal oxygen [d(Ag···O)=2.923(3) Å] and pyridine nitrogen atoms [d(Ag···N)=2.483(5) Å]. The coordination around the Ag+ ion has the form of a distorted Archimedean square antiprism. The ability of the macrocycle to complex the silver cation in its hydrophilic cavity is demonstrated.


References

  1. A. F. Danil de Namor, F. J. Sueros Velarde and M. C. Cabaleiro, J. Chem. Soc., Faraday Trans., 1996, 92, 1731 RSC.
  2. A. F. Danil de Namor, F. J. Sueros Velarde, R. G. Hutcherson, O. E. Piro and E. E. Castellano, J. Chem. Soc., Faraday Trans., 1998, 94, 1257 RSC.
  3. A. F. Danil de Namor, E. Gil, O. E. Piro and E. E. Castellano, unpublished results.
  4. A. F. Danil de Namor, M. L. Zapata-Ormachea and R. G. Hutcherson, J. Phys. Chem. B, 1998, in press Search PubMed.
  5. A. F. Danil de Namor, M. L. Zapata-Ormachea and R. G. Hutcherson, submitted.
  6. F. Bottino, L. Giunta and S. Pappalardo, J. Org. Chem., 1989, 54, 5407 CrossRef CAS.
  7. S. Pappalardo, L. Giunta, M. Foti, G. Ferguson, J. Gallagher and B. Kaitner, J. Org. Chem., 1992, 57, 2611 CrossRef CAS.
  8. P. Neri and S. Pappalardo, J. Org. Chem., 1993, 58, 1048 CrossRef CAS.
  9. F. Bottino and S. Pappalardo, J. Inclusion Phenom. Mol. Recognit. Chem., 1994, 19, 85 CAS.
  10. S. Pappalardo, G. Ferguson, P. Neri and C. Rocco, J. Org. Chem., 1995, 60, 4576 CrossRef CAS.
  11. A. F. Danil de Namor, E. E. Castellano, L. E. Pulcha Salazar, O. E. Piro and O. Jafou, to be submitted.
  12. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, in Purification of Laboratory Chemicals, Pergamon Press, UK, 2nd edn, 1980 Search PubMed.
  13. A. F. Danil de Namor, F. J. Sueros Velarde and M. C. Cabaleiro, Polyhedron, 1997, 16, 1588 CrossRef.
  14. D. Bax, C. L. de Ligny and A. G. Remijnse, Rec. Trav. Chim., 1972, 91, 965 CAS.
  15. A. Sabatini, A. Vacca and P. Gans, Talanta, 1974, 21, 53 CrossRef CAS.
  16. A. Sabatini and A. Vacca, Coord. Chem. Rev., 1992, 120, 389 CrossRef CAS.
  17. J. J. Christensen, J. Ruckman and L. D. Hansen, Rev. Sci. Instrum., 1965, 36, 779 CAS.
  18. R. Irving and I. Wadsö, Acta Chem. Scand., 1964, 18, 195 CAS.
  19. B. G. Cox and H. Schneider, in Coordination and Transport Properties of Macrocyclic Compounds in Solution, Elsevier, New York, 1992 Search PubMed.
  20. W. R. Busing and A. H. Levy, Acta Crystallogr., 1957, 10, 180 CrossRef CAS.
  21. B. A. Frenz, Enraf-Nonius Structure Determination Package; Enraf-Nonius: Delft, The Netherlands, 1983.
  22. G. M. Sheldrick, SHELX93, a Program for Crystal Structure Refinement; University of Cambridge, Cambridge, England, 1996.
  23. G. M. Sheldrick, Acta Crystallogr. A, 1990, 46, 467 CrossRef.
  24. G. M. Sheldrick, SHELX93, a Program for Crystal Structure Refinement; University of Göttingen, Germany, 1993.
  25. G. Goethals, M. C. Moreau-Descoings, C. Sarazin, J. P. Seguin and J. P. Doucet, Spectrosc. Lett., 1989, 22, 973 CAS.
  26. J. E. Del Bene, W. B. Person and K. Szczepaniak, Chem. Phys. Lett., 1995, 247, 89 CrossRef CAS.
  27. R. H. Vreekamp, W. Verboom and D. N. Reinhoudt, J. Org. Chem., 1996, 61, 4282 CrossRef CAS.
  28. J. E. King, in Physical Chemistry of Organic Solvent Systems, ed. A. K. Covington and T. Dickinson, Plenum Press, New York, 1973 Search PubMed.
  29. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533 CrossRef CAS.
  30. A. F. Danil de Namor, R. M. Cleverley and M. L. Zapata-Ormachea, Chem. Rev., 1998, in press Search PubMed.
  31. O. Popovych and R. P. Tomkins, in Non-aqueous Solution Chemistry, Wiley, New York, 1981 Search PubMed.
  32. B. G. Cox, G. R. Hedwig, A. J. Parker and D. W. Watts, Aust. J. Chem., 1974, 27, 477 CAS.
  33. C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge, TN, 1965.
  34. A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, G. D. Andreetti, G. Calestani and F. Ugozzoli, J. Inclusion Phenom. Mol. Recognit. Chem., 1988, 6, 119 CrossRef CAS.
  35. G. Calestani, F. Ugozzoli, A. Arduini, E. Ghidini and R. Ungaro, J. Chem. Soc., Chem. Commun., 1987, 344 RSC.
  36. W. Xu, R. Pudephatt, L. Manojlovic-Muir, K. W. Muir and C. S. Frampton, J. Inclusion Phenom. Mol. Recognit. Chem., 1994, 19, 277 CrossRef CAS and references therein.
Click here to see how this site uses Cookies. View our privacy policy here.