Resonance Raman and surface-enhanced resonance Raman studies of polymer-modified electrodes which mimic heme enzymes

(Note: The full text of this document is currently only available in the PDF Version )

Steven E. J. Bell, Martin D. Devenney, James Grimshaw, Susumu Hara, James H. Rice and Jadwiga Trocha-Grimshaw


Abstract

Iron-5,10,15,20-tetraphenylporphyrin (FeTPP) has been incorporated into films of a coordinating hydrogel polymer support medium, poly(γ-ethyl-L-glutamate) (PEG) functionalised with imidazole pendant arms (PEG-Im), and studied insitu on silver electrodes using a combination of both resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectroscopy. The SERR spectra give information on the portion of the film close to the electrode surface while RR spectra probe the "‘bulk’' of the film. At open-circuit potentials the RR spectra are characteristic of the expected low-spin FeIII(TPP)(PEG-Im)2 complex formed by axial ligation but the SERR spectra show that, at the electrode surface, the complex is composed primarily of FeIII(TPP)(PEG-Im). The reasons for the difference have been investigated by systematic RR and SERR studies of both PEG-Im and a more inert polymer support based on simple PEG, which does not carry any potentially ligating imidazole pendant arms. On application of a reducing potential (-400 mV vs. SSCE) only partial reduction is observed at the surface of the PEG-Im films. However, RR spectra of the reduced films show complete and reversible conversion to the expected FeII(TPP)(PEG-Im)2 complexes so that the low electrochemical activity near the surface does not prevent efficient electron transport from the electrode surface right through the thickness of the doped polymer layer. There are striking similarities between the properties of this model system, which contains multiple randomly oriented iron porphyrins which are bis-axially coordinated by imidazoles in a solvent accessible poly(amino acid) matrix, and those of cytochrome c3, which is a tetraheme protein of low molecular weight. In cyt c3 the FeIII hemes, which are bis-coordinated by histidine residues, lie close to each other and again show efficient inter-heme electron transfer. The structure of the synthetic PEG-Im film model appears to be sufficiently close in structure to the enzyme that it also reproduces the main features of its behaviour.


References

  1. B. Meunier, Chem. Rev., 1992, 92, 1411 CrossRef CAS.
  2. F. Bedioui, J. Devynck and C. Biedcharreton, J. Mol. Catal. A, 1996, 113, 3 CrossRef CAS.
  3. S. E. J. Bell, M. Devenney, J. Grimshaw, J. Trocha-Grimshaw and J. J. McGarvey, J. Chem. Soc., Chem. Commun., 1992, 221 RSC.
  4. S. E. J. Bell, M. Devenney, J. Grimshaw and J. Trocha-Grimshaw, J. Phys. IV, 1994, 4, 157 Search PubMed.
  5. J. Hayon, A. Raveh and A. Bettelheim, J. Electroanal. Chem., 1993, 359, 209 CrossRef CAS.
  6. J. N. Younathan, K. S. Wood and T. J. Meyer, Inorg. Chem., 1992, 31, 3280 CrossRef CAS.
  7. K. A. Macor and T. G. Spiro, J. Am. Chem. Soc., 1983, 105, 5601 CrossRef CAS.
  8. F. Bedioui, Y. Bouhier, C. Sorel, J. Devynck, L. Cocheguerente, A. Deronzier and J. C. Moutet, Electrochim. Acta, 1993, 38, 2485 CrossRef CAS.
  9. S. Campestrini and B. Meunier, Inorg. Chem., 1992, 31, 1999 CrossRef CAS.
  10. P. R. Cooke, C. Gilmartin, G. W. Gray and J. R. L. Smith, J. Chem. Soc., Perkin Trans. 2, 1995, 1573 RSC.
  11. J. Hayon, D. Ozer, J. Rishpon and A. Bettelheim, J. Chem. Soc., Chem. Commun., 1994, 619 RSC.
  12. R. K. Chang and T. E. Furtak, Surface Enhanced Raman Spectroscopy, Plenum Press, New York, 1982 Search PubMed.
  13. M. Devenney, J. Grimshaw and J. Trocha-Grimshaw, J. Chem. Soc., Perkin Trans. 2, 1998, 917 RSC.
  14. N. Parthasarathi, C. Hansen, S. Yamaguchi and T. G. Spiro, J. Am. Chem. Soc., 1987, 109, 3865 CrossRef CAS.
  15. G. Chottard, P. Battioni, J. P. Battioni, M. Lange and D. Mansuy, Inorg. Chem., 1981, 20, 1718 CrossRef CAS.
  16. J. M. Burke, J. R. Kincaid and T. G. Spiro, J. Am. Chem. Soc., 1978, 100, 6077 CrossRef CAS.
  17. J. M. Burke, J. R. Kincaid, S. Peters, R. R. Gagne, J. P. Collman and T. G. Spiro, J. Am. Chem. Soc., 1978, 100, 6083 CrossRef CAS.
  18. T. G. Spiro, Adv. Protein Chem., 1985, 37, 111 Search PubMed.
  19. “Labcalc” is available from Galactic Industries Corporation, 395 Main Street, Salem, NH 03079, USA.
  20. Y. Kobayashi and K. Itoh, J. Phys. Chem., 1985, 89, 5174 CrossRef CAS.
  21. A. H. R. Al-Obaidi, S. J. Rigby, S. E. J. Bell and J. J. McGarvey, J. Phys. Chem., 1992, 96, 10960 CrossRef CAS.
  22. M. L. Mitchell, X. Y. Li, J. R. Kincaid and T. G. Spiro, J. Phys. Chem., 1987, 91, 4690 CrossRef CAS.
  23. K. Shin, S. K. Kramer and H. M. Goff, Inorg. Chem., 1987, 26, 4103 CrossRef CAS.
  24. T. M. Cotton, in Spectroscopy of Surfaces, ed. R. J. H. Clark and R. E. Hester, Wiley, New York, 1988, p. 91 Search PubMed.
  25. C. M. Hosten, R. L. Birke and J. R. Lombardi, J. Phys. Chem., 1992, 96, 6585 CrossRef CAS.
  26. P. Matejka, B. Vlckova, J. Vohlidal, P. Pancoska and V. Braumruk, J. Phys. Chem., 1992, 96, 1361 CrossRef CAS.
  27. C. B. Mou, D. M. Chen, X. Y. Wang, B. Z. Zhang, T. J. He, H. W. Xin and F. C. Liu, Spectrochim. Acta. A, 1991, 47, 1575 CrossRef.
  28. T. Okumura, S. Endo, A. Ui and K. Itoh, Inorg. Chem., 1992, 31, 1580 CrossRef CAS.
  29. O. K. Song, E. J. Shin, M. Y. Lee, D. Kim, J. T. Han, J. G. Jee and M. J. Yoon, J. Raman Spectrosc., 1992, 23, 667 CAS.
  30. Z. H. Tai, J. F. Zhang, J. S. Gao and G. Xue, J. Mater. Chem., 1993, 3, 417 RSC.
  31. B. Vlckova, P. Matejka, P. Pancoska, V. Baumruk and V. Kral, Inorg. Chem., 1991, 30, 4103 CrossRef CAS.
  32. B. Vlckova, P. Matejka, J. Simonova, K. Cermakova, P. Pancoska and V. Baumruk, J. Phys. Chem., 1993, 97, 9719 CrossRef CAS.
  33. G. Heibel, K. Griebenow and P. Hildebrandt, Biochim. Biophys. Acta, 1991, 1060, 196 CAS.
  34. G. Smulevich and T. G. Spiro, J. Phys. Chem., 1985, 89, 5168 CrossRef CAS.
  35. P. Bianco and J. Haladjian, Electrochim. Acta, 1981, 26, 1001 CrossRef CAS.
  36. R. Haser, M. Pierrot, M. Frey, F. Payan, J. P. Astier, M. Bruschi and J. Le Gall, Nature (London), 1979, 282, 806 CAS.
  37. Y. Morimoto, T. Tani, H. Okumura, Y. Higuchi and N. Yasuoka, J. Biochem., 1991, 110, 532 CAS.
  38. M. Pierrot, R. Haser, M. Frey, F. Payan and J. P. Astier, J. Biol. Chem., 1982, 257, 4341.
  39. B. Guigliarelli, P. Bertrand, C. More, R. Haser and J. P. Gayda, J. Mol. Biol., 1990, 216, 161 CAS.
  40. D. D. Schlereth, V. M. Fernandez and W. Mantele, Biochemistry, 1993, 32, 9199 CrossRef CAS.
  41. K. Ichimura, K. Kimura, Y. Nakahara, T. Yagi and H. Inokuchi, Chem. Lett., 1982, 19 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.