Photoluminescence and quantum chemical studies of electronic and optical properties of m-nitroaniline and m-nitrophenol crystals

(Note: The full text of this document is currently only available in the PDF Version )

M. Magdalena Szostak, Bolesław Kozankiewicz, Grażyna Wójcik and Józef Lipiński


Abstract

Fluorescence, phosphorescence and their excitation spectra of single crystals of m-nitroaniline (m-NA) and of m-nitrophenol (m-NPh) were measured at 5 K. m-NA and m-NPh were also studied in an n-hexane Shpolskii matrix. Phosphorescence and phosphorescence decays were also collected at higher temperatures. On the basis of band position analysis and quantum chemical calculations the phosphorescence is assigned to the molecular emission whereas the fluorescence is supposed to originate from crystal defects—radical ions. Radical ions are photogenerated in both materials and in m-NA by crystal freezing below the glassy phase transition. Computed values of the first order hyperpolarizability, βvec, are larger for radical ions than for neutral molecules which suggests that radical ions are intermediates in the molecular mechanism of optical nonlinearity generation.


References

  1. B. L. Davidov, L. D. Derkačeva, V. V. Dunina, M. E. Žabotinskij, B. F. Zolin, L. G. Koreneva and M. A. Samochina, ŽEksp. Teor. Fiz., 1970, 12, 24 Search PubMed.
  2. P. D. Southgate and D. S. Hall, Appl. Phys. Lett., 1971, 18, 456 CAS.
  3. V. P. Shigorin and G. P. Shipulo, Kristallographija, 1973, 18, 557 Search PubMed.
  4. (a) M. M. Szostak, J. Raman Spectrosc., 1979, 8, 43 CAS; (b) M. M. Szostak, Mater. Sci., 1981, 7, 359 CAS; (c) M. M. Szostak, J. Raman Spectrosc., 1982, 12, 228 CAS; (d) M. M. Szostak, Chem. Phys., 1988, 121, 449 CrossRef CAS.
  5. (a) M. M. Szostak, B. J. E. Smith and D. N. Batchelder, in Proc. XI Int. Conf. Raman Spectrosc., ed. R. J. H. Clark and D. A. Long, John Wiley and Sons, London, 1988, p. 583 Search PubMed; (b) M. M. Szostak, N. le Calvé, F. Romain and B. Pasquier, Chem. Phys., 1994, 187, 373 CrossRef CAS.
  6. (a) G. Wójcik and Y. Marqueton, Mol. Cryst. Liq. Cryst., 1989, 168, 247 CAS; (b) J. Giermańska, G. Wójcik and M. M. Szostak, J. Raman Spectrosc., 1990, 21, 479 CAS; (c) G. Wójcik, J. Giermańska, Y. Marqueton and C. Ecolivet, J. Raman Spectrosc., 1991, 22, 375 CAS; (d) G. Wójcik, B. Jakubowski, M. M. Szostak, K. Hołderna-Natkaniec, J. Mayer and I. Natkaniec, Phys. Status Solidi A, 1992, 134, 139 CAS.
  7. M. M. Szostak, B. Jakubowski and M. Komorowska, Mol. Cryst. Liq. Cryst., 1993, 229, 7 Search PubMed.
  8. M. Komorowska, G. Wójcik and M. M. Szostak, J. Mol. Struct., 1995, 348, 445 CrossRef CAS.
  9. M. M. Szostak, G. Wójcik, J. Gallier, M. Bertault, P. Freundlich and H. A. Kołodziej, Chem. Phys., 1988, 229, 275 CrossRef.
  10. K. Meerholz, J. Świątkiewicz and P. N. Prasad, J. Phys. Chem., 1995, 99, 7715 CrossRef CAS.
  11. A. Takahashi and S. Mukamel, J. Chem. Phys., 1995, 103, 7144 CrossRef CAS.
  12. C. J. Seliskar, O. S. Khail and S. P. McGlynn, in Excited States, ed. E. C. Lim, Academic Press, New York, 1974, vol. I Search PubMed.
  13. G. Bendazzolli, F. Bertinelli, P. Palmieri and C. Taliani, Chem. Phys., 1976, 16, 319 CrossRef.
  14. G. Wójcik, J. Lipiński, M. Komorowska and M. M. Szostak, Adv. Mater. Opt. Electron., 1996, 6, 307 CrossRef CAS.
  15. A. P. Monkman, P. Adams, A. Molton, M. Scully and S. Pomfret, Mol. Cryst. Liq. Cryst., 1993, 236, 187 Search PubMed.
  16. P. A. Lane, M. Liess, X. Wei, J. Partee, J. Shinor, A. J. Frank and Z. V. Vardeny, Chem. Phys., 1998, 227, 57 CrossRef CAS.
  17. A. C. Skapski and J. L. Stevenson, J. Chem. Soc., Perkin Trans. 2, 1972, 1197 RSC.
  18. G. Wójcik and L. Toupet, Mol. Cryst. Liq. Cryst., 1993, 229, 153 Search PubMed.
  19. B. Kozankiewicz, Sci. Instrum., 1989, 4, 87 Search PubMed.
  20. J. Lipiński, Int. J. Quantum Chem., 1988, 34, 423 CrossRef CAS.
  21. L. Komorowski and J. Lipiñski, Mol. Cryst. Liq. Cryst., 1985, 120, 187 CAS.
  22. S. Roszak and J. Lipiński, Int. J. Quantum Chem., 1992, 44, 831 CAS.
  23. M. J. S. Dewar, E. G. Zoebisz, E. F. Healy and J. J. P. Steward, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  24. S. H. Hubig and J. K. Kochi, J. Phys. Chem., 1995, 99, 17 578 CrossRef CAS.
  25. T. Urbański, M. Kryszewski, K. Kosiński and W. Sas, Rocz. Chem., 1973, 47, 757 Search PubMed.
  26. T. Asaji and A. Weiss, Z. Naturforsch. A, 1985, 40, 567.
  27. R. Nowak, A. Krajewska and M. Samoć, Chem. Phys. Lett., 1983, 94, 270 CrossRef CAS.
  28. S. D. Chemerisov, O. Ya. Grinberg, D. S. Tipikin, Ya. S. Lebedev, H. Kurreck and K. Möbius, Chem. Phys. Lett., 1994, 218, 353 CrossRef CAS.
  29. G. Yang, Y. Li, Z. A. Dreger, J. O. White and H. G. Drickamer, Chem. Phys. Lett., 1997, 280, 375 CrossRef CAS.
  30. S. Desgreniers, L. Roubi, C. Carlone and H. D. Hochheimer, Can. J. Phys., 1986, 64, 277 CAS.
  31. M. Szablewski, J. Org. Chem., 1994, 59, 954 CrossRef CAS.
  32. G. Lanzani, L. Rossi, A. Piaggi, A. J. Pal and C. Taliani, Chem. Phys. Lett., 1994, 226, 547 CrossRef CAS.
  33. J. Giermańska, M. M. Szostak and W. W. Kowala, J. Mol. Struct., 1990, 222, 285 CrossRef CAS.
  34. H. Nobutoki and H. Koezuka, J. Phys. Chem. A, 1997, 101, 3762 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.