Group-theoretical framework for characterizing the ring flipping of spiro[5.5]undecane derivatives. Pseudo-point groups and subsymmetry-itemized enumeration

(Note: The full text of this document is currently only available in the PDF Version )

Shinsaku Fujita


Abstract

The pseudo-point group DD2d for characterizing the flipping of the two cyclohexane rings in spiro[5.5]undecane is defined. Spirane derivatives with a given formula and a given symmetry are enumerated by the unit-subduced-cycle-index (USCI) approach on the basis of the spiro[5.5]undecane skeleton. The symmetry of each derivative corresponds to one of the subgroups of DD2d, which are classified into isoenergetic (isoenergetic-achiral and isoenergetic-chiral) or anisoenergetic (anisoenergetic-achiral and anisoenergetic-chiral) ones. The orbits in the derivative are discussed by the sphericity and chronality.


References

  1. E. L. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison, The Conformational Analysis, Wiley, New York, 1965 Search PubMed.
  2. M. Nakazaki, Kagaku no Ryoiki, 1967, 21, 760 Search PubMed.
  3. R. J. Fessenden and J. S. Fessenden, Organic Chemistry, Brooks/Cole, Monterey, 3rd edn., 1986 Search PubMed.
  4. J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organic Chemistry, McGraw-Hill, New York, 3rd edn., 1970 Search PubMed.
  5. R. T. Morrison and R. N. Boyd, Organic Chemistry, Allyn and Bacon, Boston, 5th edn., 1987 Search PubMed.
  6. T. W. G. Solomons, Organic Chemistry, Wiley, New York, 3rd edn., 1984 Search PubMed.
  7. K. Mislow and P. Bickart, Isr. J. Chem., 1976/1977, 15, 1 Search PubMed.
  8. E. L. Eliel, Isr. J. Chem., 1976/1977, 15, 7 Search PubMed.
  9. J. E. Leonard, G. S. Hammond and H. E. Simmons, J. Am. Chem. Soc., 1975, 97, 5052 CrossRef CAS.
  10. J. E. Leonard, J. Phys. Chem., 1977, 81, 2212 CrossRef CAS.
  11. J. R. L. Flurry, J. Phys. Chem., 1976, 80, 777 CrossRef.
  12. J. R. L. Flurry, J. Chem. Educ., 1984, 61, 663.
  13. S. Fujita, Bull. Chem. Soc. Jpn., 1994, 67, 2927 CAS.
  14. S. Fujita, Bull. Chem. Soc. Jpn., 1994, 67, 2935 CAS.
  15. S. Fujita, J. Chem. Soc., Faraday Trans., 1998, 94, 2515 RSC.
  16. S. Fujita, J. Chem. Inf. Comput. Sci., in press Search PubMed.
  17. I. G. Mursakulov, E. A. Ramazanov, M. M. Guseinov, N. S. Zegirov, V. V. Samoskin and E. L. Eliel, Tetrahedron, 1980, 36, 1885 CrossRef CAS.
  18. R. S. Cahn, C. K. Ingold and V. Prelog, Angew. Chem. Int. Ed. Engl., 1966, 5, 385 CrossRef CAS.
  19. H. Dodziuk, J. Chem. Soc., Perkin Trans. 2, 1986, 249 RSC.
  20. D. Tavernier, Bull. Soc. Chim. Belg., 1987, 96, 253 CAS.
  21. S. Fujita, Theor. Chim. Acta, 1989, 76, 247 CAS.
  22. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag, Berlin-Heidelberg, 1991 Search PubMed.
  23. The quadruplet depicted in Fig. 2 comes from substitution on ring A. The counterpart quadruplet can be derived from substitution on ring B. Each conformer of the latter quadruplet is considered to coincide with either conformer of the former quadruplet.
  24. The term “enantiomeric” is used to designte the relationship between two isomers with opposite chiralities (e.g. R vs. S). The term ieim “ergo-enantiomeric” is coined here by analogy with the chirality phenomena, since it aims at designating the relationship between two isomers (quadruplets) with opposite energeticities (e.g. axial vs. equatorial). The prefix “ergo” comes from the Greek word ioid “ergon”(work).
  25. S. Fujita, Bull. Chem. Soc. Jpn., 1990, 63, 2770 CAS.
  26. S. Fujita, J. Math. Chem., 1993, 12, 173 Search PubMed.
  27. S. Fujita, J. Am. Chem. Soc., 1990, 112, 3390 CrossRef CAS.
  28. The word ioid “signal” is mainly used to refer to an NMR signal. For example, a fluorine atom substituted for each X exhibits an NMR signal, which is regarded as a single signal without taking accout of its multiplicity. Thus, the multiplicity of a single signal is disregarded throughout this paper.
Click here to see how this site uses Cookies. View our privacy policy here.