The linear isopiestic relations for the saturated system (B–C–D–A2(sat)–A1) whose subsystem (B–C–D–A1) conforms to the Zdanovskii rule and the Stokes–Robinson relation

(Note: The full text of this document is currently only available in the PDF Version )

Yu-Feng Hu and Zhi-Chang Wang


Abstract

Isopiestic measurements have been made for the systems mannitol–sorbitol–BaCl2·2H2O(sat)–H2O, mannitol–sorbitol–K2SO4(sat)–H2O, mannitol–sorbitol–MgSO4·7H2O(sat)–H2O, mannitol–sucrose–BaCl2·2H2O(sat)–H2O, mannitol–sucrose–K2SO4(sat)–H2O, mannitol–sucrose–MgSO4·7H2O(sat)–H2O, and sucrose–urea–NaCl(sat)–H2O at 298.15 K. The linear isopiestic relations for the saturated systems have been derived and compared with the present isopiestic measurements and those reported previously. For the new linear isopiestic relations to hold, the corresponding unsaturated subsystem (B–C–D–A1) must conform to the Zdanovski rule and the Stokes–Robinson linear isopiestic relation. Under this condition, the saturated system (B–C–D–A2(sat)–A1) conforms to the new linear relations, irrespective of whether A2 is a non-electrolyte or an electrolyte, a symmetrical electrolyte or an unsymmetrical electrolyte.


References

  1. A. B. Zdanovskii, Trudy Solyanoi Laboratorii Akad. Nauk SSSR, 1936, no. 6 Search PubMed.
  2. R. H. Stokes and R. A. Robinson, J. Phys. Chem., 1966, 70, 2126 CrossRef CAS.
  3. H. Chen, J. Sangster, T. T. Teng and F. Lenzi, Can. J. Chem. Eng., 1973, 51, 234 Search PubMed.
  4. V. K. Filippov, D. S. Barkov and Yu. A. Fedorov, J. Solution Chem., 1986, 15, 611 CAS.
  5. Z. C. Wang, H. L. Yu and Y. F. Hu, J. Chem. Thermodyn., 1994, 26, 171 CrossRef CAS.
  6. Y. F. Hu and Z. C. Wang, J. Chem. Thermodyn., 1994, 26, 429 CrossRef CAS.
  7. Y. F. Hu and Z. C. Wang, J. Chem. Thermodyn., 1997, 29, 879 CrossRef CAS.
  8. Y. F. Hu, J. Chem. Soc., Faraday Trans., 1998, 94, 913 RSC.
  9. H. Majima and Y. Awakura, Metall. Trans., B, 1986, 17, 621 Search PubMed.
  10. H. Majima and Y. Awakura, Metall. Trans., B, 1988, 19, 349 Search PubMed.
  11. H. A. C. Mckay and J. K. Perring, Trans. Faraday Soc., 1953, 49, 163 RSC.
  12. H. Schonert, Z. Phys. Chem. N. F., 1986, 150, 163.
  13. H. Schonert, Z. Phys. Chem. N. F., 1986, 150, 181.
  14. N. Daldrup and H. Schonert, J. Chem. Soc., Faraday Trans., 1988, 84, 2553 Search PubMed.
  15. R. A. Robinson and R. H. Stokes, J. Phys. Chem., 1962, 66, 506 CAS.
  16. F. J. Kelly, R. A. Robinson and R. H. Stokes, J. Phys. Chem., 1961, 65, 1958 CAS.
  17. V. E. Bower and R. A. Robinson, J. Res. Nat. Bur. Stand. A, 1965, 69, 131 Search PubMed.
  18. H. Uedaira and H. Uedaira, J. Phys. Chem., 1970, 74, 1932.
  19. Z. C. Wang, X. H. Zhang, T. Z. He and Y. H. Bao, J. Chem. Thermodyn., 1989, 21, 653 CAS.
  20. Z. C. Wang, R. Luck and B. Predel, J. Chem. Soc., Faraday Trans., 1990, 86, 3641 RSC.
  21. Y. F. Hu, Y. H. Liu and Z. C. Wang, in preparation.
  22. Y. F. Hu, PhD Thesis, Northeastern University, 1997.
  23. Y. F. Hu, J. Solution Chem., 1998, 27, 457 CrossRef.
  24. A. Chalmers and G. W. Rigby, Ind. Eng. Chem. Anal. Ed., 1932, 4, 162 Search PubMed.
  25. L. J. Weber, Z. Anorg. Chem., 1929, 181, 385 Search PubMed.
  26. J. A. Rard and R. F. Platford, in Activity Coefficients in Electrolyte Solutions, ed. K. S. Pitzer, CRC Press, Boca Raton, 2nd ed., 1991 Search PubMed.
  27. M. A. Flesia, M. R. Gennero de Chialvo and A. C. Chialvo, Fluid Phase Equilib., 1997, 131, 189 CrossRef CAS.
  28. R. A. Robinson and V. E. Bower, J. Res. Nat. Bur. Stand. A, 1965, 69, 19 Search PubMed.
  29. S. Palitzsch, Z. Phys. Chem. A, 1929, 145, 97 Search PubMed.
  30. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 2nd ed. rev., 1965 Search PubMed.
  31. R. A. Robinson and R. H. Stokes, J. Phys. Chem., 1961, 65, 1954 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.