Single-crystal and multi-frequency EPR studies on chemical analogues of Amavadin: V(IV)-doped Ca[Ti(hida)2]·6H2O, and Mo(V)-doped [PPh4][Nb(hida)2] and [NEt4][Ta(R,R-hidpa)2] [H3hida=2,2′-(hydroxyimino)diacetic acid, H3hidpa=2,2′-(hydroxyimino)dipropionic acid]

(Note: The full text of this document is currently only available in the PDF Version )

Eric J. L. McInnes, Frank E. Mabbs, Spencer M. Harben, Paul D. Smith, David Collison, C. David Garner, Graham M. Smith and Peter C. Riedi


Abstract

Q-band single-crystal and powder EPR spectra at multiple frequencies (X, Q and 180 GHz) of V(IV)-doped Ca[Ti(hida)2]·6H2O and Mo(V)-doped [PPh4][Nb(hida)2] and [NEt4][Ta(R,R-hidpa)2] (H3hida=2,2′-(hydroxyimino)diacetic acid; H3hidpa 2,2′-(hydroxyimino)dipropionic acid) are reported. The Ti{V} system has the spin-Hamiltonian parameters g11=1.910, g22=1.987, g33=1.990, A11=176.4 G, A22=53.5 G and A33=46.3 G with non-coincidence between the principal axes of the g- and A-matrices. The Euler angles for the non-concidence are α=11.5°, χ=4.63° and γ=346.0°. The triclinic EPR symmetry is consistent with the low (C1) point symmetry of the [Ti{V}(hida)2]2- anion in the solid state. The small angles of non-coincidence between the principal axes of the g and A matrices are also evident from the Q-band powder spectrum, but not the X-band spectrum. High-frequency (34–180 GHz) EPR measurements on powders of both the Nb{Mo} and Ta{Mo} systems reveal the presence of two magnetically distinct Mo centers in each case. The Nb{Mo} system has g-values of g11(a)=1.9765, g11(b)=1.9755, g22(a)=1.9675, g22(b)=1.9665, g33(a)=1.8870 and g33(b)=1.8840, while the Ta{Mo} system has g11(a)=1.976, g11(b)=1.974, g22(a)=1.970, g22(b)=1.967, g33(a)=1.894 and g33(b)=1.892.


References

  1. E. Bayer and H. Kneifel, Z. Naturforsch., Teil B, 1972, 27, 207 Search PubMed.
  2. H. Kneifel and E. Bayer, Angew. Chem., Int. Ed. Engl., 1973, 12, 508 CrossRef; H. Kneifel and E. Bayer, J. Am. Chem. Soc., 1986, 108, 3075 CrossRef CAS.
  3. E. M. Armstrong, R. L. Beddoes, L. J. Calviou, J. M. Charnock, D. Collison, S. N. Ertok, J. H. Naismith and C. D. Garner, J. Am. Chem. Soc., 1993, 115, 807 CrossRef CAS.
  4. J. Felcman and J. J. R. Fraústo da Silva, Talanta, 1983, 30, 3075 CrossRef CAS; R. D. Gillard and R. J. Lancashire, Phytochemistry, 1983, 23, 179 CrossRef CAS; P. Krauss, E. Bayer and H. Kneifel, Z. Naturforsch., Teil B, 1984, 39, 829 Search PubMed; E. Koch, H. Kneifel and E. Bayer, Z. Naturforsch., Teil C, 1987, 42, 873 Search PubMed.
  5. E. M. Armstrong, D. Collison, R. J. Deeth and C. D. Garner, J. Chem. Soc., Dalton Trans., 1995, 191 RSC.
  6. P. D. Smith, R. E. Berry, S. M. Harben, R. L. Beddoes, M. Helliwell, D. Collison and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 4509 RSC.
  7. H. S. Yadav, E. M. Armstrong, R. L. Beddoes, D. Collison and C. D. Garner, J. Chem. Soc., Chem. Commun., 1994, 605 RSC; P. D. Smith, E. J. L. McInnes, R. L. Beddoes, D. Collison, J. J. A. Cooney, S. M. Harben, M. Helliwell, F. E. Mabbs, A. K. Powell and C. D. Garner, unpublished work.
  8. P. D. Smith, S. M. Harben, R. L. Beddoes, M. Helliwell, D. Collison and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 685 RSC; S. M. Harben, J. J. A. Cooney, P. D. Smith, M. Helliwell, D. Collison and C. D. Garner, unpublished work.
  9. S. M. Harben, P. D. Smith, R. L. Beddoes, D. Collison and C. D. Garner, Angew. Chem., Int. Ed. Engl., 1997, 36, 1897 CrossRef CAS; S. M. Harben, P. D. Smith, M. Helliwell, D. Collison and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 4517 RSC.
  10. G. M. Smith, J. C. G. Lesurf, R. H. Mitchell and P. C. Riedi, A quasi-optical cw mm-wave ESR spectrometer, submitted to Review of Scientific Intsruments Search PubMed; G. M. Smith, J. C. G. Lesurf, R. H. Mitchell and P. C. Riedi, A high performance mm-wave electron spin resonance spectrometer, in MTT Symposium Proceedings, Orlando 1995 Search PubMed.
  11. F. E. Mabbs and D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, Amsterdam, 1992, ch. 7 Search PubMed.
  12. D. S. Schonland, Proc. Phys. Soc. London, 1959, 73, 788 Search PubMed.
  13. A. Lund and T. Vanngard, J. Chem. Phys., 1965, 42, 2979 CAS.
  14. D. L. Liczwek, R. L. Bedford, J. R. Pilbrow and J. S. Hyde, J. Phys. Chem., 1983, 87, 2509 CrossRef CAS; G. L. Wilson, R. J. Greenwood, J. R. Pilbrow, J. T. Spence and A. G. Wedd, J. Am. Chem. Soc., 1991, 113, 6803 CrossRef CAS; F. E. Mabbs and D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, Amsterdam, 1992, p. 116 Search PubMed; F. E. Mabbs, Chem. Soc. Rev., 1993, 313 Search PubMed.
  15. J. R. Morton and K. F. Preston, J. Magn. Reson., 1983, 52, 457 CAS.
  16. F. E. Mabbs and D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, Amsterdam, 1992, p. 251 Search PubMed.
  17. F. E. Mabbs and D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, Amsterdam, 1992, p. 1199 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.