Addition of particles of alternating charge

(Note: The full text of this document is currently only available in the PDF Version )

Marianna Máte′ and Jeremy J. Ramsden


Abstract

The maximum attainable coverage of a given type of particle on a smooth planar surface is limited by the shape and size of the particles, and by their electrostatic charge. By alternating the adsorption of one type of particle with another of opposite charge, a composite layer is formed in which the jamming limit is exceeded. The phenomenon was investigated experimentally using negatively charged silica particles and positively charged iron(III) hydroxide, dispersed in water. Silica is not adsorbed at all on a bare silica–titania surface but, after depositing iron(III) hydroxide particles to the jamming limit, a jammed layer of silica may be subsequently deposited, upon which more iron(III) hydroxide may be deposited. The sequence cannot be continued adlib, however, because at each step progressively less material is deposited. Optical waveguide lightmode spectroscopy (OWLS) was used to monitor the precise number of particles adsorbed at each step, and the corresponding layer thickness. Analysis of the results revealed that true multilayers are not formed, because of incomplete charge reversal at each step. The adsorbed silica provides a fresh surface on which the iron(III) hydroxide can be adsorbed, but the amount of silica is limited by interparticle repulsion and, as the interfacial region becomes progressively more basic due to the presence of the iron(III) hydroxide, the silica becomes more and more negatively charged, interparticle repulsion increases, and its jamming limit ineluctably decreases.


References

  1. J. J. Ramsden and M. Máté, J. Chem. Soc., Faraday Trans., 1998, 94, 783 RSC.
  2. J. J. Ramsden, Yu. A. Lvov and G. Decher, Thin Solid Films, 1995, 254, 246 CrossRef CAS.
  3. G. Decher, Science, 1997, 277, 1232 CrossRef CAS.
  4. A. Krozer, S.-A. Nordin and B. Kasemo, J. Colloid Interface Sci., 1995, 176, 479 CrossRef CAS.
  5. T. Graham, J. Chem. Soc., 1862, 15, 216 RSC.
  6. M. Zrínyi, M. Kabai-Faix, S. Juhos and F. Horkay, Langmuir, 1993, 9, 71 CrossRef CAS.
  7. W. Stöber, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62 CrossRef.
  8. Z. Füzi, Thesis, ELTE Kolloidkémiai és Kolloidtechnológiai Tanszék, Budapest, 1992.
  9. K. Tiefenthaler and W. Lukosz, J. Opt. Soc. Am. B, 1989, 6, 209 CrossRef CAS.
  10. J. J. Ramsden, J. Stat. Phys., 1993, 73, 853.
  11. E. K. Mann, L. Heinrich, J. C. Voegel and P. Schaaf, J. Chem. Phys., 1996, 105, 6082 CrossRef CAS.
  12. E. K. Mann, L. Heinrich and P. Schaaf, Langmuir, 1997, 13, 4906 CrossRef CAS.
  13. P. Viot, G. Tarjus, S. M. Ricci and J. Talbot, J. Chem. Phys., 1992, 97, 5212 CrossRef CAS.
  14. Z. Adamczyk, M. Zembala, B. Siwek and P. Warszyński, J. Colloid Interface Sci., 1990, 140, 123 CAS.
  15. P. Schaaf and J. Talbot, J. Chem. Phys., 1989, 91, 4401 CrossRef CAS.
  16. T. W. Healy and L. R. White, Adv. Colloid Interface Sci., 1978, 9, 303 CrossRef CAS.
  17. C. J. van Oss, M. K. Chaudhury and R. J. Good, Chem. Rev., 1988, 88, 927 CrossRef CAS.
  18. C. J. van Oss, Forces Interfaciales en Milieux Aqueux, Masson, Paris, 1996 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.