Theoretical study of benzyl radical reactivity in combustion systems

(Note: The full text of this document is currently only available in the PDF Version )

William M. Davis, Simone M. Heck and Huw O. Pritchard


Abstract

It has recently been suggested that benzyl radicals may play an important role in stimulating spontaneous ignition, both in diesel and in petrol engines. We examine here one of the proposed mechanisms. The energies and structures of the intermediate benzylhydroperoxide, and of the initial reactants and final products, were determined at the MP2/6-311G**//B3LYP/6-311G** level of theory. An estimate was made of the k(E) function for the unimolecular dissociation of into and thence, the relative fractions of collisions that lead directly to the formation of OH, as a function of temperature and pressure, as opposed to being stabilized to the hydroperoxide. The computed rate constants were then incorporated into a kinetic model in order to assess the importance of benzyl radicals in stimulating spontaneous ignition in hydrocarbon - air mixtures.


References

  1. P. Q. E. Clothier, D. Shen and H. O. Pritchard, Combust. Flame, 1995, 101, 383 Search PubMed.
  2. C. Morley, paper presented at 14th International Gas Kinetics Symposium, Leeds, September 1996.
  3. R. Hüttel and H. Ross, Chem. Ber., 1956, 89, 2644 Search PubMed; R. Hütel, H. Schmidt and H. Ross, Chem. Ber., 1959, 92, 699 Search PubMed.
  4. B. Nozière, R. Lesclaux, M. D. Hurley, M. A. Dearth and T. J. Wallington, J. Phys. Chem., 1994, 98, 2864 Search PubMed.
  5. S. Gäb, personal communication.
  6. Oliver Schmitz, Diplomarbeit, Bergische Universität-Gesamthochschule, Wuppertal, 1996.
  7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Repogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Gaussian, Inc., Pittsburgh, PA, 1995.
  8. JANAF Thermochemical Tables, NSRDS-NBS 35, National Bureau of Standards, Washington, 1971.
  9. K. A. Sahetchian, R. Rigny, J. Tardiu de Maleissye, L. Batt, M. Anwar Kahn and S. Mathews, Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, 1992, p. 637 Search PubMed.
  10. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell, Oxford, 1990 Search PubMed.
  11. H. O. Pritchard, Quantum Theory of Unimolecular Reactions, Cambridge University Press, Cambridge, 1984 Search PubMed.
  12. A. D. Kirk and J. H. Knox, Trans. Faraday Soc., 1960, 56, 1296 Search PubMed.
  13. S. W. Benson and G. N. Spokes, Int. J. Chem. Kinet., 1968, 12, 29 Search PubMed.
  14. C.-C. Hsu, M. C. Lin, A. M. Mebel and C. F. Melius, J. Phys. Chem., 1997, 101, 60 Search PubMed.
  15. R. Benassi and F. Taddei, Tetrahedron, 1994, 50, 4795 Search PubMed Fig. 2 and 3.
  16. D. C. Tardy and B. S. Rabinovitch, J. Chem. Phys., 1966, 45, 3720 Search PubMed.
  17. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1985 Search PubMed.
  18. F. F. Fenter, B. Nozière, F. Caralp and R. Lesclaux, Int. J. Chem. Kinet., 1994, 26, 171 Search PubMed.
  19. S. M. Heck, H. O. Pritchard and J. F. Griffiths, J. Chem. Soc., Faraday Trans., 1998, 94, 1725 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.