Empirical bond additivity scheme for the calculation of enthalpies of vaporisation of organic liquids

(Note: The full text of this document is currently only available in the PDF Version )

Derek W. Smith


Abstract

The enthalpy of vaporisation ΔHv° of an organic liquid can be expressed empirically as the sum of additive bond terms from which must be subtracted an amount proportional to the sum of the differences in group electronegativities between groups linked by carbon–carbon bonds. This latter term is deemed to arise from disruption of carbon–carbon bonding compared with the free molecule, consequent upon the formation of intermolecular bond–bond interactions. For C4–C8 alkanes, experimental values of ΔHv° can be reproduced with a mean discrepancy of ca. 0.3 kJ mol-1, with the introduction of only two new adjustable parameters. For halogenoalkanes, alkanols, ethers, thiols, thioethers and amines, an additional term is necessary for C–H bonds α to the functional group; this can be partially explained in terms of bond polarities, obtained by electronegativity equilibration. For alkanes and alkane derivatives, including nitriles, aldehydes and ketones, the C–C bonds apparently make no contribution to the enthalpy of vaporisation. Compared with earlier empirical schemes, the agreement between experimental and calculated values is just as satisfactory, but with fewer adjustable parameters.


References

  1. M. L. McGlashan, Chemical Thermodynamics, Academic Press, London, 1979, p. 208 Search PubMed.
  2. S. W. Benson and L. J. Garland, J. Phys. Chem., 1991, 95, 4915 CrossRef CAS.
  3. K. J. Laidler, Can. J. Chem., 1956, 34, 626 CAS.
  4. E. G. Lovering and K. J. Laidler, Can. J. Chem., 1960, 38, 2367 CAS.
  5. E. G. Lovering and O. M. Nor, Can. J. Chem., 1962, 40, 199 CAS.
  6. J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, London, 1970, pp. 121–124 Search PubMed.
  7. S. W. Benson and J. H. Buss, J. Chem. Phys., 1958, 29, 546 CrossRef CAS.
  8. N. Cohen and S. W. Benson, Chem. Rev., 1993, 93, 2419 CrossRef CAS.
  9. M. Ducros, J. F. Gruson and H. Sannier, Thermochim. Acta., 1980, 36, 39 CrossRef CAS.
  10. M. Ducros, J. F. Gruson and H. Sannier, Thermochim. Acta, 1981, 44, 131 CrossRef CAS.
  11. M. Ducros and H. Sannier, Thermochim. Acta, 1982, 54, 153 CrossRef CAS.
  12. M. Ducros and H. Sannier, Thermochim. Acta, 1984, 75, 329 CrossRef CAS.
  13. D. W. Smith, J. Chem. Soc., Faraday Trans., 1998, 94, 201 RSC.
  14. D. W. Smith, J. Chem. Ed., 1990, 67, 559 CAS.
  15. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, 3rd edn., 1960, p. 93 Search PubMed.
  16. J. D. Cox and G. Pilcher, ref. 6, p. 551.
  17. J. P. Lowe, Science, 1973, 179, 207.
  18. D. W. Smith, J. Chem. Ed., 1998, 75, 307.
  19. K. S. Pitzer, Acc. Chem. Res., 1983, 16, 207 CrossRef.
  20. H. A. Skinner, J. Chem. Soc., 1962, 4396 RSC.
  21. V. Majer and V. Svoboda, Enthalpies of Vaporisation of Organic Compounds, IUPAC Chemical Data Series No. 32, Blackwell, Oxford, 1985 Search PubMed.
  22. D. W. Smith, J. Chem. Soc., Faraday Trans., 1997, 93, 2037 RSC.
  23. D. W. Smith, J. Chem. Soc., Faraday Trans., 1996, 92, 1141, 4415 RSC.
  24. J. B. Pedley, Thermochemical Data and Structures of Organic Compounds, Thermodynamics Research Center, College Station, TX, 1994, vol. 1 Search PubMed.
  25. Stereochemical Applications of Gas-phase Electron Diffraction, ed. I. Hargittai and M. Hargittai, VCH, New York, 1988 Search PubMed.
  26. G. W. Neilson and A. K. Adya, Annu. Rep. Prog. Chem., Sect. C, 1997, 93, 101 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.