Microcalorimetric investigation of mordenite and Y zeolites for 1-methylnaphthalene isomerisation

(Note: The full text of this document is currently only available in the PDF Version )

I. Ferino, R. Monaci, E. Rombi and V. Solinas


Abstract

Adsorption microcalorimetry of pyridine has been used to determine the concentration and the distribution of strengths of the acid sites of Y zeolites and mordenite samples. 1-Methylnaphthalene was reacted over these samples at 623 K under atmospheric pressure in a continuous-flow fixed-bed reactor. For Y zeolites the relative extents of 1-methylnaphthalene isomerisation and disproportionation have been found to depend on the density of the acid sites. Coke growth favours isomerisation over disproportionation as time-on-stream increases. However, both disproportionation and coking are highly disfavoured in the channel system of mordenites, in spite of the relatively high density of the acid sites. The accumulation of strongly adsorbed feed and/or product molecules is responsible for the severe decay in activity of non-dealuminated mordenite.


References

  1. C. Dimitrov, Z. Popova and M. Tuyen, React. Kinet. Catal. Lett., 1978, 1, 101.
  2. V. Solinas, R. Monaci, B. Marongiu and L. Forni, Appl. Catal., 1983, 5, 171 CrossRef CAS.
  3. V. Solinas, R. Monaci, B. Marongiu and L. Forni, Appl. Catal., 1984, 9, 109 CrossRef CAS.
  4. V. Solinas, R. Monaci, B. Marongiu and L. Forni, in Catalyst Deactivation, ed. B. Delmon and G. F. Froment, Elsevier, Amsterdam, 1987, p. 493 Search PubMed.
  5. L. Forni, V. Solinas and R. Monaci, I. & E. C. Res., 1987, 26, 1860 Search PubMed.
  6. M. M. Neuber, S. Ernst, H. Geerts, P. J. Grobet, P. A. Jacobs, G. T. Kokotailo and J. Weitkamp, in ref. 4, p. 567.
  7. M. Neuber, H. G. Karge and J. Weitkamp, Catal. Today, 1988, 3, 11 CrossRef CAS.
  8. H. K. Beyer, I. M. Belenykaja, F. Hange, M. Tielen, P. J. Grobet and P. A. Jacobs, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 2889 RSC.
  9. G. Colón, I. Ferino, E. Rombi, E. Selli, L. Forni, P. Magnoux and M. Guisnet, Appl. Catal., A, 1998, 168, 81 CrossRef CAS.
  10. N. Cardona-Martinez and J. A. Dumesic, J. Catal., 1990, 125, 427 CAS.
  11. M. L. Poutsma, in Zeolite Chemistry and Catalysis, ed. J. A. Rabo, ACS Monograph 171, American Chemical Society, Washington, 1976, p. 437 Search PubMed.
  12. S. Morin, N. S. Gnep and M. Guisnet, J. Catal., 1996, 159, 296 CrossRef CAS.
  13. S. Morin, N. S. Gnep and M. Guisnet, Proceedings Int. Symp. Acid–Base Catalysis III, Rolduc, April 20–24, 1997, p. 43 Search PubMed.
  14. M. Guisnet and N. S. Gnep, in Zeolites: Science and Technology, ed. F. R. Ribeiro, A. E. Rodriguez, L. D. Rollmann and C. Naccache, NATO ASI Series, Martinus Nijhof, the Hague, 1984, p. 571 Search PubMed.
  15. P. Ratnasamy, S. Sivasankar and S. Vishnoi, J. Catal., 1981, 69, 428 CrossRef CAS.
  16. P. Cartraud, A. Cointot, M. Dufour, N. S. Gnep, M. Guisnet, G. Joly and J. Tejada, Appl. Catal., 1986, 21, 85 CrossRef CAS.
  17. J. A. Martens, J. Perez-Pariente, E. Sastre, A. Corma and P. A. Jacobs, Appl. Catal., 1988, 45, 85 CrossRef CAS.
  18. G. Bourdillon, C. Gueguen and M. Guisnet, Appl. Catal., 1990, 61, 123 CrossRef CAS.
  19. S. M. Csicsery, Zeolites, 1984, 4, 208 CrossRef.
  20. M. Guisnet and P. Magnoux, Appl. Catal., 1989, 54, 1 CrossRef.
  21. J. R. Anderson, Q.-N. Dong, Y.-F. Chang and R. J. Western, J. Catal., 1991, 127, 113 CAS.
  22. P. Magnoux, C. Canaff, F. Machado and M. Guisnet, J. Catal., 1992, 134, 286 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.