Hydrogen-bonded forms of ethanol—IR spectra and abinitio computations

(Note: The full text of this document is currently only available in the PDF Version )

William O. George, Teyfik Has, Md. Fokhray Hossain, Bryan F. Jones and Rhobert Lewis


Abstract

The IR spectra of ethanol as a dilute solution in CCl4 has been measured between 3100 and 4000 cm-1. The integrated absorption coefficient of the monomeric O–H stretching mode is calculated as (2.183±0.019)×104 m mol-1 and the proportion of the components associated with the three principal bands and a fourth weaker band estimated. Components considered were monomer, open dimer, cyclic trimers (two forms) and cyclic tetramers (four forms). Abinitio calculations were carried out using basis sets up to the restricted Hartree Fock 6-311++G(d,p) level. Relevant calculated IR wavenumber and intensity values, O–H···O bond lengths, dipole moments and hydrogen bonding energies are reported and discussed. Models of the cyclic trimers of methanol and ethanol created from a number of possible chair and boat forms are optimised by abinitio calculations and lead to new proposed structures. These comprise high energy structures in which the alkyl groups are on the same side of a six-membered ring (with approximate C3 symmetry) which are compared with previously described low energy forms in which alkyl groups are on opposite sides (with approximate C1 symmetry). Selected spectroscopic and thermodynamic properties together with calculated structures are determined for both forms using three basis sets and the results are reported at the highest basis set used {RHF/6-31G(d,p)}. Hydrogen bonding energies are reported for methanol and ethanol trimers as 65.9 and 65.7 kJ mol-1 for the C3 form and 69.0 and 68.7 kJ mol-1 for the C1 form. These values are susceptible to choice of basis set within the restricted Hartree Fock method, to the energy terms included and to basis set superposition errors. From the four possible structures for the cyclic tetramers, that with S4 symmetry is found to be the most favoured. The experimental and theoretical results are consistent with an equilibrium involving monomer, open dimer, cyclic trimer and cyclic tetramer.


References

  1. W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc., 1920, 42, 1419 CrossRef CAS .
  2. J. K. Gregory and D. C. Clary, J. Phys. Chem., 1996, 100, 18 014 CrossRef CAS .
  3. K. Lui, M. G. Brown, C. Carter, R. J. Saykally, J. K. Gregory and D. C. Clary, Nature (London), 1996, 381, 501 CrossRef CAS .
  4. G. Winnewisser and E. Herbst, Organic molecules in space, Top. Cur. Chem., 1987, 139, 119 Search PubMed .
  5. J. R. Dixon, W. O. George, M. F. Hossain, Rh. Lewis and J. M. Price, J. Chem. Soc., Faraday Trans., 1997, 93, 3611 RSC .
  6. J. Errera and P. Mollet, Nature (London), 1936, 138, 882 CAS .
  7. J. J. Fox and A. E. Martin, Proc. Roy. Soc. London, Ser. A., 1937, 162, 419 ; Nature (London), 1937, 139, 507 Search PubMed .
  8. U. Liddel and E. D. Becker, Spectrochim. Acta, Part A, 1957, 10, 70 CrossRef CAS .
  9. M. Van Thiel, E. D. Becker and G. C. Pimentel, J. Chem. Phys., 1957, 27, 95 CrossRef CAS .
  10. L. J. Bellamy and R. J. Pace, Spectrochim. Acta, Part A, 1966, 22, 525 CrossRef CAS .
  11. L. J. Bellamy, K. J. Morgan and R. J. Pace, Spectrochim. Acta, Part A, 1966, 22, 535 CrossRef CAS .
  12. A. J. Barnes and H. E. Hallam, Trans. Faraday Soc., 1970, 66, 1932 RSC .
  13. R. G. Inskeep, J. M. Kelliher, P. E. McMahon and B. G. Somers, J. Chem. Phys., 1958, 28, 1033 CrossRef CAS .
  14. A. J. Barnes, H. E. Hallam and D. Jones, Proc. R. Soc. London, Ser. A., 1973, 335, 97 CrossRef CAS .
  15. G. Brink and L. Glasser, J. Phys. Chem., 1978, 82, 1000 CrossRef CAS .
  16. G. Brink and L. Glasser, J. Mol. Struct., 1986, 145(3–4), 219 CrossRef CAS .
  17. W. A. P. Luck and O. Schrems, J. Mol. Struct., 1980, 60, 333 CrossRef CAS .
  18. F. Schwager, E. Marand and R. M. Davis, J. Phys. Chem., 1996, 100, 19268 CrossRef CAS .
  19. M. Ehbrecht and F. Huisken, J. Phys. Chem., 1997, 101, 7768 Search PubMed .
  20. F. Huisken and M. Stemmler, Chem. Phys. Lett., 1988, 144, 391 CrossRef CAS .
  21. U. Buck, X. J. Gu, C. Lauenstein and A. Rudolph, J. Chem. Phys., 1990, 92(10), 6017 CrossRef CAS .
  22. U. Buck, X. J. Gu, M. Hobein, C. Lauenstein and A. Rudolph, J. Chem. Soc., Faraday Trans., 1990, 86, 1923 RSC .
  23. Galactic Grams/386, Galactic Industries Corporation, 1995 Search PubMed .
  24. M. J. Frisch, G. W. Trucks, H. B. Schegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Oritz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94 Inc, Pittsburgh, PA, 1995 .
  25. J. R. Dixon, W. O. George and Rh. Lewis, The Networking of Infrared Spectrometers and Computers in Computing Applications in Molecular Spectroscopy, ed. W. O. George and D. Steele, Royal Society of Chemistry, 1995, p. 61 Search PubMed .
  26. Y. C. Tse and M. D. Newton, J. Am. Chem. Soc., 1977, 99, 611 CrossRef CAS .
  27. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc, Pittsburgh, PA, 1996, p.64 Search PubMed .
  28. O. Mo, M. Yanez and J. Elguero, THEOCHEM., 1994, 314, 73 CrossRef .
  29. O. Mo, M. Yanez and J. Elguero, J. Chem. Phys., 1992, 97, 6628 CrossRef CAS .
  30. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553 .
Click here to see how this site uses Cookies. View our privacy policy here.