Thermal isomerisation of protonated chlorobenzene studied in the gas phase using high-energy collision induced decomposition mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Rod S. Mason, Peter D. J. Anderson and Chris M. Williams


Abstract

The high-energy collision induced decomposition (CID) mass spectra of protonated chlorobenzene and chlorobenzene-d5 change significantly when the protonating reaction conditions in the ion source are changed. By monitoring relative peak heights as a function of gas pressure and temperature in the ion–molecule reactor, it is possible to distinguish changing abundances of up to four different protonated isomers. These are the para [C(4)], ortho [C(2)] and ipso [C(1)] ring-edge-protonated isomers and the Cl-protonated molecule (CL). It is therefore possible to elucidate the mechanism and energetics of their interconversion. Molecular orbital theory calculations place the proton affinity of the Cl atom site at ≈630 kJ mol-1, >100 kJ mol-1 below the most favoured site, which is at the C(4) ring carbon atom. Nevertheless, at low pressures and temperatures in CH4, the Cl atom becomes protonated, the kinetics being consistent with proton transfer via a proton bound ion–molecule complex. At higher pressures, intramolecular migration carries the proton over to the ring. The tandem mass spectra then become independent of pressure but specific features vary dramatically with temperature. At high pressure, the shape of the curve showing the variation with temperature, and equivalent changes in the spectra of (C6D5Cl)H+, are consistent with a simple 3-step kinetic model. At the lowest temperatures, it appears that C(4) protonation is almost complete and that migration of the proton around the ring is ‘frozen’, but heating to temperatures >300 K leads to rapid migration and equilibration between the C(2) and C(4) isomers. Fitting the model to the data gives energies of 2.4±1.6 and 23.5±3.5 kJ mol-1 for the C(2) and C(1) isomers relative to C(4), and 46±2 kJ mol-1 for the barrier to migration of the proton around the ring. A primary kinetic isotope effect of >3 is found for the thermally induced migration of the proton around (C6D5Cl)H+. At 200 K there is no primary kinetic isotope effect in the CID channel leading to loss of H from (C6D5Cl)H+, but it rises to an unprecedented high value of >90 as the temperature of the ion increases to >450 K.


References

  1. For a recent example see H. Becker, J. Hrusak, H. Schwarz and D. K. Bohme, J. Chem. Phys., 1994, 100, 1759 Search PubMed.
  2. M. Speranza, Mass Spectrom. Rev., 1992, 11, 73 CAS.
  3. J. Bordas-Nagy and K. R. Jennings, Int. J. Mass Spectrom. Ion Proc., 1990, 100, 105 CrossRef CAS.
  4. P. J. Todd and F. W. McLafferty, in Tandem Mass Spectrometry, ed. F. W. McLafferty, Wiley, New York, 1983, ch. 7 Search PubMed.
  5. R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, Metastable Ions, Elsevier, 1973 Search PubMed.
  6. C. Wesdemiotis, R. Wolfschütz and H. Schwarz, Tetrahedron, 1980, 36, 275 CrossRef CAS.
  7. For example see T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York, 2nd edn., 1981, ch. 7 and references therein Search PubMed.
  8. Y. K. Lau and P. Kebarle, J. Am. Chem. Soc., 1976, 98, 7452 CrossRef CAS.
  9. D. K. Bohme, J. A. Stone, R. S. Mason, R. S. Stradling and K. R. Jennings, Int. J. Mass Spectrom. Ion Proc., 1981, 37, 283 CrossRef CAS.
  10. A. G. Harrison and P.-H. Lin, Can. J. Chem., 1975, 53, 1314 CAS.
  11. H.-W. Leung and A. G. Harrison, Can. J. Chem., 1976, 54, 3439 CAS.
  12. W. G. Liauw and A. G. Harrison, Org. Mass Spectrom., 1981, 16, 388 CAS.
  13. K. Blom and B. Munson, Org. Mass Spectrom., 1987, 22, 727 CAS.
  14. B. S. Frieser, R. L. Woodin and J. L. Beauchamp, J. Am. Chem. Soc., 1975, 97, 6893 CrossRef.
  15. A. P. Bruins and N. M. M. Nibbering, Org. Mass Spectrom., 1976, 11, 950 CAS.
  16. D. Kuck, Mass Spectrom. Rev., 1990, 9, 583 CAS.
  17. G. A. Olah, R. H. Schlosberg, R. D. Porter, Y. K. Mo, D. P. Kelley and G. D. Mateescu, J. Am. Chem. Soc., 1972, 94, 2034 CrossRef CAS.
  18. M. Attina, F. Cacace and A. Ricci, J. Am. Chem. Soc., 1991, 113, 5397 CrossRef.
  19. R. S. Mason, D. M. P. Milton and F. M. Harris, J. Chem. Soc., Chem. Commun., 1987, 1453 RSC.
  20. R. S. Mason, A. J. Parry and D. M. P. Milton, J. Chem. Soc., Faraday Trans., 1994, 90, 1373 RSC.
  21. M. Tkaczyk and A. G. Harrison, Int. J. Mass Spectrom. Ion Proc., 1994, 132, 73 CrossRef CAS.
  22. R. S. Mason and A. J. Parry, J. Chem. Soc., Faraday Trans., 1992, 88, 3331 RSC.
  23. The theoretical proton affinity (at 0 K), defined as the enthalpy change in the reaction AH+→ A + H+, was estimated by calculating the energies of C6H5Cl and C6H5–H+ and using the experimental value for the heat of formation of H+(from ref. 36). The energies were computed using the Quantum Chemistry Program Exchange GAUSSIAN 92 package.
  24. M. N. Glukhovtsev, A. Pross, A. Nicolaides and L. Radom, J. Chem. Soc., Chem. Commun., 1996, 2347 RSC.
  25. J. Hrusak, D. Schroder, T. Weiske and H. Schwarz, J. Am. Chem. Soc., 1993, 115, 2015 CrossRef CAS.
  26. A. J. Parry, PhD Thesis, University of Wales, Swansea, 1991.
  27. An empirical value of ≈7 Å is often assumed for the interaction zone of a high-energy ion–molecule collision at long range (based on the Massey ‘adiabatic maximum’ cross-section rule); hence, at 6000 eV an ion of m/z= 115 would have ≈5 × 10–15 s in which to exchange energy.
  28. M. F. Jarrold, A. J. Illies, N. J. Kirchner and M. T. Bowers, Org. Mass Spectrom., 1983, 18, 388 CAS.
  29. D. R. Lide, in CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 73rd edn., 1992–1993 Search PubMed.
  30. Y. K. Lau, S. Ikuta and P. Kebarle, J. Am. Chem. Soc., 1982, 104, 1462 CrossRef CAS.
  31. D. H. Williams and G. Hvistendahl, J. Am. Chem. Soc., 1974, 96, 6755 CrossRef CAS.
  32. M. Bertrand, J. H. Beynon and R. G. Cooks, Org. Mass Spectrom., 1973, 7, 193 CAS.
  33. For example see E. W. MacDaniel and E. A. Mason, Mobility and Diffusion of Ions, Wiley, New York, 1973 Search PubMed.
  34. A. K. Shukla and J. H. Futrell, Mass Spectrom. Rev., 1993, 12, 211 CAS.
  35. S. G. Lias, J. E. Bartmess, J. F. Liebmann, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17.
Click here to see how this site uses Cookies. View our privacy policy here.