Chloride oxidation catalysis by a polymeric oxide derived from [Ru(4,4′-dimethyl-2,2′-bipyridine)(Cl)3(H2O)]

(Note: The full text of this document is currently only available in the PDF Version )

Suzanne Ferrere and Brian A. Gregg


Abstract

Hydrolyses of the species [Ru(4,4′-dimethyl-2,2′-bipyridine)(Cl)3(H2O)] and [Ru(2,2′,2″-terpyridine)(Cl)3] yield polymeric, water-soluble oxides that function as chloride oxidation catalysts. ‘[RuDMBO2]x’, the polymer formed from [Ru(4,4′-dimethyl-2,2′-bipyridine)(Cl)3(H2O)], is described. It is characterized by UV–VIS–NIR spectroscopy, FTIR spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electrochemical analyses. It exhibits significantly higher turnover numbers for electrocatalysis (>11000) and chemical catalysis (ca. 1000) than those previously reported for molecular µ-oxo dimers of ruthenium. The oxidation of chloride in aqueous solutions also yields some oxygen in the presence of [RuDMBO2]x. The polymer's high catalytic activity and unique structure may facilitate its incorporation into molecular photoconversion systems.


References

  1. V. K. Yachandra, V. J. DeRose, M. J. Latimer, I. Mukerji, K. Sauer and M. P. Klein, Science, 1993, 260, 675 CrossRef CAS.
  2. D. Geselowitz and T. J. Meyer, Inorg. Chem., 1990, 29, 3894 CrossRef CAS.
  3. C. D. Ellis, J. A. Gilbert, W. R. Murphy Jr. and T. J. Meyer, J. Am. Chem. Soc., 1983, 105, 4842 CrossRef CAS.
  4. M. Yagi, K. Kinoshita and M. Kaneko, J. Phys. Chem., 1996, 100, 11 098 CrossRef CAS.
  5. R. Ramaraj, A. Kira and M. Kaneko, Chem. Lett., 1987, 261 CAS.
  6. Y. Lei and J. K. Hurst, Inorg. Chim. Acta, 1994, 226, 179 CrossRef CAS.
  7. F. P. Rotzinger, S. Munavalli, P. Comte, J. K. Hurst, M. Grätzel, F.-J. Pern and A. J. Frank, J. Am. Chem. Soc., 1987, 109, 6619 CrossRef CAS.
  8. H. H. Petach and C. M. Elliott, J. Electrochem. Soc., 1992, 139, 2217 CAS.
  9. R. E. White, J. O. M. Bockris and B. E. Conway, in Modern Aspects of Electrochemistry, New York, 1986 Search PubMed.
  10. D. A. Skoog and D. M. West, Fundamentals of Analytical Chemistry, Saunders College Publishing, New York, 1982 Search PubMed.
  11. R. A. Krause, Inorg. Chim. Acta, 1977, 22, 209 CrossRef CAS.
  12. S. Anderson and K. R. Seddon, J. Chem. Res. (S), 1979, 74 Search PubMed.
  13. B. P. Sullivan, J. M. Calvert and T. J. Meyer, Inorg. Chem., 1980, 19, 1404 CrossRef.
  14. R. W. Callahan, F. R. Keene, T. J. Meyer and D. J. Salmon, J. Am. Chem. Soc., 1977, 99, 1064 CrossRef CAS.
  15. B. A. Moyer and T. H. Meyer, Inorg. Chem., 1981, 20, 436 CrossRef CAS.
  16. S. J. Raven and T. J. Meyer, Inorg. Chem., 1988, 27, 4478 CrossRef CAS.
  17. A. Harriman, I. J. Pickering, J. M. Thomas and P. A. Christensen, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 2795 RSC.
  18. E. L. Lebeau, S. A. Adeyemi and T. J. Meyer, pre-print.
  19. J. A. Gilbert, D. S. Eggleston, W. R. Murphy Jr., D. A. Geselowitz, S. W. Gersten, D. J. Hodgson and T. J. Meyer, J. Am. Chem. Soc., 1985, 107, 3855 CrossRef CAS.
  20. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978 Search PubMed.
  21. J. R. Schoonover, J. Ni, L. Roecker, P. S. White and T. J. Meyer, Inorg. Chem., 1996, 35, 5885 CrossRef CAS.
  22. C.-M. Che, K.-Y. Wong, W.-H. Leung and C.-K. Poon, Inorg. Chem., 1986, 25, 345 CrossRef CAS.
  23. Although the Ru—O—Ru symmetric stretch is also predicted in this region for singly bridged µ-oxo complexes, it is extremely weak and usually not reported in previous systems.
  24. A. M. El-Hendawy, W. P. Griffith, F. I. Taha and M. N. Moussa, J. Chem. Soc., Dalton Trans., 1989, 901 RSC.
  25. G. E. Cabaniss, A. A. Diamantis, W. R. Murphy Jr., R. W. Linton and T. J. Meyer, J. Am. Chem. Soc., 1985, 107, 1845 CrossRef CAS.
  26. The electrolysis was not exhaustive and after 28 h of electrolysis, the catalyst still retained > 15% of its initial activity.
  27. J. K. Hurst, J. Zhou and Y. Lei, Inorg. Chem., 1992, 31, 1010 CrossRef CAS.
  28. J. A. Baumann and T. J. Meyer, Inorg. Chem., 1980, 19, 345 CrossRef CAS.
  29. A. C. Dengel, A. M. El-Hendawy, W. P. Griffith, C. A. O'Mahoney and D. J. Williams, J. Chem. Soc., Dalton Trans., 1990, 737 RSC.
  30. J. M. Power, K. Evertz, L. Henling, R. Marsh, W. P. Schaefer, J. A. Labinger and J. E. Bercaw, Inorg. Chem., 1990, 29, 5058 CrossRef CAS.
  31. S. R. Cooper and M. Calvin, J. Am. Chem. Soc., 1977, 99, 6623 CrossRef CAS.
  32. C. Philouze, G. Blondin, J.-J. Girerd, J. Guilhem, C. Pascard and D. Lexa, J. Am. Chem. Soc., 1994, 116, 8557 CrossRef CAS.
  33. G. L. Elizarova, L. G. Matvinenko, O. P. Taran, V. N. Parmon and V. N. Kolomiichuk, Kinet. Katal., 1993, 33, 723 Search PubMed.
  34. G. S. Nahor, S. Mosseri, P. Neta and A. Harriman, J. Phys. Chem., 1988, 92, 4499 CrossRef CAS.
  35. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382 CrossRef CAS.
  36. R. H. Schmehl, C. K. Ryu, R. Wang, S. Ferrere, C. M. Elliott, C. L. E. Headford and J. Merkert, J. Am. Chem. Soc., 1992, 114, 430 CrossRef CAS.
  37. B. A. Gregg, M. A. Fox and A. J. Bard, Tetrahedron, 1989, 45, 4707 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.