Manganese(II)/vaterite/water systems Spectroscopic and thermodynamic study

(Note: The full text of this document is currently only available in the PDF Version )

N. Nassrallah-Aboukaïs, A. Boughriet, L. Gengembre and A. Aboukaïs


Abstract

The surface chemistry, reactivity of vaterite, and its crystalline transformation in the presence of manganese(II) have been studied in ultra-pure water and at room temperature using several techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), specific area measurements (BET), infrared (IR) spectroscopy, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). Our investigations reveal that this transformation is strongly dependent on the metal abundance in the reaction medium and cannot be considered as a simple or direct solid phase transition, i.e. vaterite→cubic calcite. Indeed, dissolution and precipitation of CaCO3 crystals proceed via (H+, HO-, Ca2+, Mn2+, HCO3-, CO32-) ion exchanges at the water/CaCO3-grain interface. The inclusion of MnII into vaterite grains occurs as adsorption followed by surface precipitation and formation of solid solutions, MnxCa1-xCO3. In this context the formation of these ‘MnII coatings’ contributes to both a decrease of vaterite solubility and a deceleration of the vaterite-to-calcite transformation. A fundamental thermodynamic approach to an understanding of the solubilities and solution properties of these MnII coatings has been addressed. The combined use of the IR and XPS techniques has allowed us to prove that vaterite grains are coated with a three component system: ‘CaCO3–MnCO3–H2O’ or hydrated MnII complexes: (H2O)y–MnxCa1-xCO3. Thermodynamic calculations demonstrated that the presence of water molecules in the lattice of Mn-vaterite contributes: (i) to a significant decrease in the free energy of formation of solid solution MnxCa1-xCO3, and (ii) thereby explains the apparent stabilization of MnII-doped vaterite observed experimentally.


References

  1. J. L. Bischoff, Am. J. Sci., 1968, 266, 80 Search PubMed.
  2. J. N. Albright, Am. Mineral., 1971, 56, 620 CAS.
  3. A. G. Turnbull, Geochim. Cosmochim. Acta, 1973, 37, 1593 CAS.
  4. J. D. C. McConnell, Mineral Mag., 1959, 32, 535 Search PubMed.
  5. Y. K. Bentor, S. Gross and L. Heller, Am. Mineral., 1963, 48, 924 CAS.
  6. D. L. G. Rowlands and R. G. Webster, Nature (London) Phys. Sci., 1971, 229, 158 Search PubMed.
  7. A. Hall and J. D. Taylor, Mineral. Mag., 1971, 38, 521 Search PubMed.
  8. W. D. Carlson in Carbonates: Mineralogy and Chemistry, ed. R. J. Reeder, series ed. P. H. Ribbe, Reviews in Mineralogy, vol. 11, Mineralogical Society of America, Bookcrafters, Chelsea, Michigan, 1983, pp. 191–225 Search PubMed.
  9. W. Stumm, Chemistry of the Solid–Water Interface: Processes at the Mineral-Water and Particle–Water Interface in Natural systems, Wiley, Interscience, New York, 1992, p. 428 Search PubMed.
  10. G. H. Nancollas and M. M. J. Reddy, Colloid Interface Sci., 1971, 37, 824 Search PubMed.
  11. M. M. Reddy and G. H. J. Nancollas, Colloid Interface Sci., 1971, 36, 166 Search PubMed.
  12. W. A. J. House, J. Chem. Soc. Faraday Trans. 1., 1981, 77, 341 RSC.
  13. T. Kazmierczak, E. Chuttringer, B. Tomazic and G. H. Nancollas, Croat. Chem. Acta, 1981, 54, 277 Search PubMed.
  14. M. M. Reddy and W. D. Gaillard, J. Colloid Interface Sci., 1981, 80, 171 CAS.
  15. O. Soehnel and J. W. Mullin, J. Cryst. Growth, 1982, 60, 239 CrossRef CAS.
  16. W. A. House and J. A. Tutton, J. Cryst. Growth, 1982, 56, 699 CrossRef CAS.
  17. P. G. Koutsoukos and C. G. Kontoyannis, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 1181 RSC.
  18. T. Ogino, T. Suzuki and K. Sawada, Geochim. Cosmochim. Acta, 1987, 51, 2757 CAS.
  19. Y. Nakahara, T. Tazawa and K. Miyata, Nippon Kagaku Kaishi, 1976, 5, 732.
  20. T. Yamaguchi and K. Murakawa, Zairyo, 1981, 30, 856 Search PubMed.
  21. A. Kartz, E. Sass and A. Starinsky, Geochim. Cosmochim. Acta, 1972, 36, 481 CrossRef.
  22. A. Kartz, Geochim. Cosmochim. Acta, 1973, 37, 1563 CrossRef CAS.
  23. R. B. Lorens, Geochim. Cosmochim. Acta, 1981, 45, 553 CAS.
  24. M. L. Franklin and J. W. Morse, Ocean Sci. and Eng., 1982, 7, 147 Search PubMed.
  25. M. L. Franklin and J. W. Morse, Mar. Chem., 1983, 12, 241 CAS.
  26. J. M. Zachara, J. A. Kittrick and J. B. Harsh, Geochim. Cosmochim. Acta, 1988, 52, 2281 CAS.
  27. J. M. Zachara, C. E. Cowan and C. T. Resch, Geochim. Cosmochim. Acta, 1991, 55, 1549 CAS.
  28. S. Kozar, H. Bilinski and M. Branica, Mar. Chem., 1992, 40, 215 CAS.
  29. P. Rivaro, R. Frache, A. Mazzucotelli, F. Cariati and A. Pozzi, Analyst, 1994, 119, 2485 RSC.
  30. N. Nassrallah-Aboukaïs, A. Boughriet, J. C. Fischer, M. Wartel, H. R. Langelin and A. Aboukaïs, J. Chem. Soc., Faraday Trans., 1996, 92, 3211 RSC.
  31. N. Nassrallah-Aboukaïs, A. Boughriet, J. Laureyns, A. Aboukaïs, J. C. Fischer, H. R. Langelin and M. Wartel, Chem. Mater., 1998, 10, 138.
  32. P. E. Larson, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 213 CrossRef CAS.
  33. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129 CrossRef CAS.
  34. D. R. Penn, J. Electron Spectrosc. Relat. Phenom, 1976, 9, 29 CrossRef CAS.
  35. A. Boughriet, B. Ouddane and M. Wartel, Mar. Chem., 1992, 37, 149 CrossRef CAS.
  36. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon press, Oxford, 1970, vol. 1 Search PubMed.
  37. V. F. Anufrienko, A. A. Altynnikov and N. N. Chumachenko, React. Kinet. Catal. Lett., 1992, 48, 599.
  38. M. B. J. McBride, Soil Sci. Soc. Am. J., 1979, 43, 693 CAS.
  39. F. T. Mackenzie, W. D. Bischoff, F. C. Bishop, M. Loijens, J. Schoonmaker and R. Wollast, ref. 8, p. 97.
  40. A. Mucci and J. W. Morse, Rev. Aquat. Sci., 1990, 3, 217 Search PubMed.
  41. D. C. Thorstenson and L. N. Plummer, Am. J. Sci., 1977, 277, 1203 Search PubMed.
  42. W. D. Schecher and D. C. McAvoy, MINEQL+, A Chemical Equilibrium Program for Personal computers, Procter and Gamble, 1994 Search PubMed.
  43. R. A. Robie, B. S. Hemingway and J. R. Fischer, U.S. Geol. Surv. Bull., 1978, 1452 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.