New thermodynamic relations concerning apparent molar isentropic compression and apparent and partial isentropic compressibilities

(Note: The full text of this document is currently only available in the PDF Version )

João Carlos R. Reis


Abstract

Some formal advances in the thermodynamics of solutions are presented and illustrated using isentropic quantities. A convenient method for dealing with expressions relating different apparent properties is introduced. This procedure is applied to ameliorate the Desnoyers–Philip equation for the difference between apparent molar isothermal and isentropic compressions, and in the analysis of Blandamer's molar isentropic compression. Apparent as well as partial quantities for intensive properties of a solution are defined. Their interrelationship is shown to be formally identical with that for conventional apparent and partial molar quantities. Also addressed are the links between the new apparent and partial quantities and their conventional molar counterparts, and between second-order partial quantities and Koga's composition derivative of partial molar quantities. Finally, the terminology of apparent and partial quantities is discussed, and the name ‘heat capacitance’ is suggested for the volume-specific isobaric heat capacity.


References

  1. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 1958, 3rd edn., ch. 8 Search PubMed.
  2. J. E. Desnoyers and P. R. Philip, Can. J. Chem., 1972, 50, 1094 CAS.
  3. M. J. Blandamer, Chem. Soc. Rev., 1998, 27, 73 RSC.
  4. M. J. Blandamer, J. Chem. Soc., Faraday Trans., 1998, 94, 1057 RSC.
  5. W. J. Acree Jr., Thermodynamic Properties of Nonelectrolyte Solutions, Academic Press, London, 1984, ch. 2 Search PubMed.
  6. G. Douhéret, C. Moreau and A. Viallard, Fluid Phase Equilib., 1985, 22, 289 CrossRef CAS.
  7. J. C. R. Reis, J. Chem. Soc., Faraday Trans. 2, 1982, 78, 1595 RSC.
  8. H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions, McGraw-Hill, New York, 1982, p. 69 Search PubMed.
  9. M. M. Abbott and K. K. Nass, Am. Chem. Soc. Symp. Ser., 1986, 300, 1 Search PubMed.
  10. L. M. P. C. Albuquerque and J. C. R. Reis, J. Chem. Soc., Faraday Trans., 1991, 87, 1553 RSC.
  11. I. M. S. Lampreia and J. C. R. Reis, Fluid Phase Equilib., 1992, 73, 243 CrossRef CAS.
  12. Y. Koga, K. Tamura and S. Murakami, J. Solution Chem., 1995, 24, 1125 CAS.
  13. F. T. Gucker, Jr., F. W. Lamb, G. A. Marsh and R. M. Haag, J. Am. Chem. Soc., 1950, 72, 310 CrossRef.
  14. B. B. Owen and H. L. Simons, J. Phys. Chem., 1957, 61, 479 CrossRef CAS.
  15. H. Nomura and Y. Miyahara, J. Appl. Polym. Sci., 1964, 8, 1643 CAS.
  16. H. Nomura, F. Kawaizumi and T. Iida, Bull. Chem. Soc. Jpn., 1987, 60, 25 CAS.
  17. R. E. Verrall and B. E. Conway, J. Phys. Chem., 1966, 70, 3961 CAS.
  18. S. Cabani, G. Conti and E. Matteoli, J. Solution Chem., 1979, 8, 11 CAS.
  19. D. P. Kharakoz, J. Phys. Chem., 1991, 95, 5634 CrossRef CAS.
  20. G. R. Hedwig and H. Høiland, J. Solution Chem., 1991, 20, 1113 CAS.
  21. G. R. Hedwig, J. D. Hastie and H. Høiland, J. Solution Chem., 1996, 25, 615 CAS.
  22. J. V. Davies, F. W. Lau, L. T. N. Le, J. T. W. Lai and Y. Koga, Can. J. Chem., 1992, 70, 2659 CAS.
  23. W. Siu and Y. Koga, Can. J. Chem., 1989, 67, 671 CAS.
  24. Y. Koga, J. Phys. Chem., 1991, 95, 4119 CrossRef CAS.
  25. Y. Koga, J. Phys. Chem., 1992, 96, 10466 CrossRef CAS.
  26. T. Moriyoshi and H. Inubushi, J. Chem. Thermodyn., 1977, 9, 587 CrossRef CAS.
  27. M. Nakagawa, H. Inubushi and T. Moriyoshi, J. Chem. Thermodyn., 1981, 13, 171 CAS.
  28. G. Douhéret, C. Moreau and A. Viallard, Fluid Phase Equilib., 1985, 22, 277 CrossRef CAS.
  29. F. Kimura, A. J. Treszczanowicz, C. J. Halpin and G. C. Benson, J. Chem. Thermodyn., 1983, 15, 503 CAS.
  30. G. Douhéret and M. I. Davies, Chem. Soc. Rev., 1993, 22, 43 RSC.
  31. G. Douhéret, P. Lajoie, M. I. Davies, J. L. Ratliff, J. Ulloa and H. Høiland, J. Chem. Soc., Faraday Trans., 1995, 91, 2291 RSC.
  32. H. Ogawa and S. Murakami, J. Solution Chem., 1987, 16, 315 CAS.
  33. J.-Y. Huot, E. Battistel, R. Lumry, G. Villeneuve, J.-F. Lavallee, A. Anusiem and C. Jolicoeur, J. Solution Chem., 1988, 17, 601 CrossRef CAS.
  34. M. Sakurai, K. Nakamura and N. Takenaka, Bull. Chem. Soc. Jpn., 1994, 67, 352 CAS.
  35. M. Sakurai, K. Nakamura and K. Nitta, J. Chem. Eng. Data, 1995, 40, 301 CrossRef CAS.
  36. I. M. S. Lampreia and L. A. V. Ferreira, J. Chem. Soc., Faraday Trans., 1996, 92, 47 RSC.
  37. I. M. S. Lampreia and J. M. S. T. Neves, Thermochim. Acta, 1997, 298, 65 CrossRef CAS.
  38. R. Buwalda, J. B. F. N. Engberts, H. Høiland and M. J. Blandamer, J. Phys. Org. Chem., 1998, 11, 59 CrossRef CAS.
  39. S. A. Galema, J. B. F. N. Engberts, H. Høiland and G. M. Førland, J. Phys. Chem., 1993, 97, 6885 CrossRef CAS.
  40. J. I. Lankford, W. T. Holladay and C. M. Criss, J. Solution Chem., 1984, 13, 699 CAS.
  41. D. Salcedo and M. Costas, J. Chem. Soc., Faraday Trans., 1997, 93, 3781 RSC.
  42. G. Perron, J. E. Desnoyers and F. J. Millero, Can. J. Chem., 1974, 52, 3738 CAS.
  43. J. G. Mathieson and B. E. Conway, J. Solution Chem., 1974, 3, 455 CAS.
  44. M. Sakurai, T. Nakajima, T. Komatsu and T. Nakagawa, Chem. Lett., 1975, 971 CAS.
  45. M. Sakurai, T. Komatsu and T. Nakagawa, Bull. Chem. Soc. Jpn., 1981, 54, 643 CAS.
  46. G. Perron, J.-F. Fortier and J. E. Desnoyers, J. Chem. Thermodyn., 1975, 7, 1177 CAS.
  47. G. Perron, A. Roux and J. E. Desnoyers, Can. J. Chem., 1981, 59, 3049 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.