Solvation and catalyst–substrate superstructure of a tungsten tris(dithiolene) complex dissolved in water–acetone A molecular dynamics model calculation

(Note: The full text of this document is currently only available in the PDF Version )

Jannis Samios, Dimitris Katakis, Dimitris Dellis, Emmanouel Lyris and Christine-Anne Mitsopoulou


Abstract

The intermolecular interactions of the catalyst tris(1,2-ethylenedithiolate-S,S′)tungsten, W(S2C2H2)3, with the molecules of a 25:75 water–acetone mixed solvent, are examined by statistical mechanical methods, and specifically by a molecular dynamics (MD) technique, using charge distributions obtained by extended Hückel calculations. The results are presented in the form of pair correlation functions (PCF), and show that an average of up to three water molecules come close to the sites of the catalyst, whereas the acetone molecules form an open cage at a somewhat longer distance. The supramolecular structure around the catalyst is asymmetric, and is examined in the two characteristic geometries corresponding to the D3h and C2v symmetries which the ‘tris(dithiolene)’ molecule transiently assumes during its fluxional metamorphoses in solution. At large distance (large values of the correlation parameter r) the system is homogeneous. Yet, at nanometer distances the symmetry breaks down, and the system becomes highly asymmetric with differentiation (selectivity) in space. The mobility of the water and acetone molecules, close to the catalyst, was also studied by estimating the translational self-diffusion coefficients Dwat and Dacet from the center of mass linear velocity correlation functions. The results show that the water molecules are more mobile than the acetone molecules, which is the opposite of what happens without the catalyst.


References

  1. S. Alvarez, R. Vicente and R. Hoffmann, J. Am. Chem. Soc., 1985, 107, 6253 CrossRef CAS.
  2. R. Hoffmann, Solids and Surfaces, VCH, New York, 1988 Search PubMed.
  3. C. Mealli and D. M. Proserpio, J. Chem. Educ., 1990, 67, 399 CrossRef CAS; J. H. Ammeter, H. B. Burgi, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 3686 CrossRef CAS.
  4. M. D. Allen and D. J. Tildesley, Computer Simulations of Liquids, Oxford University Press, New York, 1987 Search PubMed.
  5. E. Hontzopoulos, E. Vrachnou-Astra, J. Konstantatos and D. Katakis, J. Mol. Catal., 1985, 31, 327 CrossRef CAS; C. Mitsopoulou, J. Konstantatos, D. Katakis and E. Vrachnou, ibid., 1991, 67, 137 Search PubMed.
  6. A. Vlcek and A. A. Vlcek, Inorg. Chim. Acta, 1980, 41, 123 CrossRef CAS.
  7. P. Falaras, C. A. Mitsopoulou, D. Argyropoulos, E. Lyris, N. Psaroudakis, E. Vrachnou and D. Katakis, Inorg. Chem., 1995, 34, 4536 CrossRef CAS; D. Argyropoulos, C. A. Mitsopoulou and D. Katakis, ibid., 1996, 35, 5549 Search PubMed; D. Argyropoulos, E. Lyris, C. A. Mitsopoulou and D. Katakis, J. Chem. Soc., 1997, 615 Search PubMed.
  8. E. Hontzopoulos, E. Vrachnou-Astra, D. Konstantatos and D. Katakis, J. Photochem., 1985, 30, 117 CrossRef CAS; D. Katakis, C. Mitsopoulou, J. Konstantatos, E. Vrachnou and P. Falaras, J. Photochem. Photobiol. A: Chem., 1992, 68, 375 CrossRef CAS; D. Katakis, C. Mitsopoulou and E. Vrachnou, ibid., 1994, 81, 103 Search PubMed; E. Lyris, D. Argyropoulos, C. A. Mitsopoulou, D. Katakis and E. Vrachnou, ibid., 1997, 108, 51 Search PubMed.
  9. J. Timmermans, Physico-chemical constants of binary systems in concentrated solutions, Interscience, New York, 1960, vol. 2 Search PubMed.
  10. D. Fincham and D. E. Heyes, Information quarterly of computer simulation of condensed phases, Daresbury Laboratory, England, CCP5, Newsletter, N6, 1988 Search PubMed; D. Fincham, Information quarterly of computer simulation of condensed phases, Daresbury Laboratory, England, CCP5, Newsletter N12, 1984, p. 47 Search PubMed.
  11. H. J. C. Berendsen, J. P. M. Postma, W. F. Vangusteren and J. Hermans, in Intermolecular forces, ed. B. Pullman, Reidel, Dordrecht, 1981 Search PubMed.
  12. C. A. Wellington and S. H. Khouwaiter, Tetrahedron, 1978, 34, 2183 CrossRef CAS.
  13. M. Ferrario, M. Haughney, I. R. McDonald and M. L. Klein, J. Chem. Phys., 1990, 93, 5156 CrossRef.
  14. W. L. Jorgensen and L. J. Swemson, J. Am. Chem. Soc., 1983, 105, 1407 CrossRef CAS.
  15. W. L. Jorgensen, J. Phys. Chem., 1986, 90, 6379 CrossRef CAS.
  16. J. M. M. Roco, A. Caho Hernandez, S. Velasco and A. Medino, J. Chem. Phys., 1997, 107, 4844 CrossRef CAS (see Table 1).
  17. A. Luzar and D. Chandler, J. Chem. Phys., 1993, 98, 8160 CrossRef CAS.
  18. A. E. Smith, G. N. Schrauzer, V. P. Mayweg and W. Heinrich, J. Am. Chem. Soc., 1965, 87, 5798 CrossRef CAS; R. Eisenberg and J. A. Ibers, J. Am. Chem. Soc., 1965, 87, 3776 CrossRef CAS; R. Eisenberg in Progress in Inorganic Chemistry, ed. S. J. Lippard, Wiley, 1970, vol. 112, p. 314 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.