Mechanistic study of the Me2SiH–Me3Si radical system

(Note: The full text of this document is currently only available in the PDF Version )

I. Lein, C. Kerst, N. L. Arthur and P. Potzinger


Abstract

Di- and trimethylsilyl radicals, generated by the reaction of H atoms with di- and trimethylsilane, react to produce three main products: 1,1,2,2-tetramethyldisilane, pentamethyldisilane and hexamethyldisilane. These products are formed by both radical combination and radical disproportionation reactions. The disproportionation reactions form Me2Si which inserts into the Si–H bonds of the reactants. From a quantitative determination of the disilane products as a function of the reactant ratio, a value for the branching ratio of cross-disproportionation of di- and trimethylsilyl radicals relative to the branching ratio for the disproportionation of dimethylsilyl radicals can be extracted. Our results provide strong evidence that the ratio of the rate constants for hydrogen abstraction from di- and trimethylsilane by H atoms is larger than absolute rate measurements suggest. Analysis also shows that the geometric mean rule for cross-radical reaction is closely obeyed. Disproportionation reactions yielding silaethenes occur to a minor extent and are responsible for the formation of six trisilanes. Secondary reactions, mainly initiated by H-atom abstraction from tetra- and pentamethyldisilane by silyl radicals, also take place. The relative rate constants estimated for these reactions are in agreement with a previous determination.


References

  1. B. Reimann, A. Matten, R. Laupert and P. Potzinger, Ber. Bunsen-Ges. Phys. Chem., 1977, 81, 500 Search PubMed.
  2. C. Kerst and P. Potzinger, J. Chem. Soc., Faraday Trans., 1997, 93, 1071 RSC.
  3. C. Kerst, P. Potzinger and H. Gg. Wagner, J. Photochem. Photobiol. A, 1995, 90, 19 CrossRef CAS.
  4. C. Kerst, P. Potzinger and H. Gg. Wagner, Z. Naturforsch. A, 1996, 51, 105 CAS.
  5. M. Ahmed, P. Potzinger and H. Gg. Wagner, J. Photochem. Photobiol. A, 1995, 86, 33 CrossRef CAS.
  6. R. J. Cvetanovic, W. E. Falconer and K. R. Jennings, J. Chem. Phys., 1961, 35, 1225 CrossRef CAS.
  7. J. E. Bagott, M. A. Blitz, H. M. Frey, P. D. Lightfoot and R. Walsh, Chem. Phys. Lett., 1987, 135, 39 CrossRef CAS.
  8. J. E. Bagott, M. A. Blitz, H. M. Frey and R. Walsh, J. Am. Chem. Soc., 1990, 112, 8337 CrossRef.
  9. N. L. Arthur, P. Potzinger, B. Reimann and H. P. Steenbergen, J. Chem. Soc., Faraday Trans. 2, 1989, 85, 1447 RSC.
  10. J. H. Hong, PhD Thesis, University of Detroit, 1972.
  11. J. A. Cowfer, K. P. Lynch and J. V. Michael, J. Phys. Chem., 1975, 79, 1139 CrossRef CAS.
  12. M. A. Contineanu, D. Mihelcic, R. N. Schindler and P. Potzinger, Ber. Bunsen-Ges. Phys. Chem., 1971, 75, 426 Search PubMed.
  13. K. Wörsdorfer, B. Reimann and P. Potzinger, Z. Naturforsch. A, 1983, 38, 896.
  14. N. Fujisaki and T. Gäumann, Int. J. Chem. Kinet., 1982, 14, 1059 CAS.
  15. N. L. Arthur and J. R. Christie, Int. J. Chem. Kinet., 1987, 19, 261 CAS.
  16. N. L. Arthur and L. A. Miles, personal communication.
  17. S. Sakai and M. S. Gordon, Chem. Phys. Lett., 1986, 123, 405 CrossRef CAS.
  18. L. Fabry, P. Potzinger, B. Reimann, A. Ritter and H. P. Steenbergen, Organometallics, 1986, 5, 1231 CrossRef CAS.
  19. C. Kerst, P. Potzinger and H. Gg. Wagner, Z. Naturforsch. A, 1996, 51, 102 CAS.
  20. C. Kerst, I. Lein and P. Potzinger, J. Photochem. Photobiol. A, 1998, 113, 9 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.