X-Ray absorption spectroscopic and electrochemical analyses of Pt–Cu–Fe ternary alloy electrocatalysts supported on carbon

(Note: The full text of this document is currently only available in the PDF Version )

Jihoon Cho, Whanjin Roh, Dong-Kuk Kim, Joo-Byoung Yoon, Jin-Ho Choy and Hasuck Kim


Abstract

Carbon-supported Pt–Cu–Fe ternary alloy electrocatalysts have been prepared with two atomic compositions of Pt:Cu:Fe=6:1:1 (denoted as Pt6CuFe/C) and 2:1:1 (denoted as Pt2CuFe/C). The metal alloy structures are investigated by means of powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) at the Pt LIII-edge. Powder XRD analysis shows that alloy particles in the Pt6CuFe/C catalyst form a face-centred cubic structure (AuCu3 type), while those in Pt2CuFe/C catalyst form a face-centred tetragonal structure (AuCu type). EXAFS analyses of the first-neighbour coordination at the Pt LIII-edge for both catalysts show the contraction of Pt–Pt bond distances compared to bulk Pt metal, and also that the ratio of the coordination numbers for Pt and Cu/Fe atoms are statistically consistent with the catalyst composition. Some alloy catalysts exhibit ca. 50% higher catalytic activity towards the oxygen reduction reaction than Pt-only catalysts. The enhanced catalytic activity may be due to the formation of an ordered alloy. The catalysts which display higher ordering show higher mass activity. Cyclic voltammetry reveals the influence of the adsorptive strength of oxygen molecules on the kinetics of oxygen reduction. Unexpectedly, as the adsorptive strength becomes weaker, the specific activity of the alloy catalysts continuously increases, while the mass activity shows a maximum value.


References

  1. V. M. Jalan, US Pat., 1980, 4 202 934 Search PubMed.
  2. T. Itoh, S. Matsuzawa and K. Katoh, US Pat., 1984, 4 794 054 Search PubMed.
  3. D. A. Landsman and F. J. Luczak, US Pat., 1987, 4 711 829 Search PubMed.
  4. T. Itoh and K. Katoh, US Pat., 1991, 5 024 905 Search PubMed.
  5. V. M. Jalan and E. J. Taylor, J. Electrochem. Soc., 1983, 130, 2299 CAS.
  6. K. Daube, M. Paffett, S. Gottesfeld and C. Campbell, J. Vac. Sci. Technol. A, 1986, 4, 1617 CrossRef CAS.
  7. J. T. Glass, G. L. Cahen Jr. and G. E. Storner, J. Electrochem. Soc., 1987, 134, 58 CAS.
  8. J. T. Hwang and J. S. Chung, J. Electrochem. Soc., 1993, 140, 31.
  9. E. A. Stern and K. Kim, Phys. Rev. B, 1981, 23, 3781 CrossRef CAS.
  10. B. K. Teo, in EXAFS: Basic Principles and Data Analysis, Springer-Verlag, Berlin, 1986 Search PubMed.
  11. D. E. Sayers and B. A. Bunker, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, ed. D. C. Koningsberger and R. Prins, Wiley-Interscience, New York, 1988, p. 211 Search PubMed.
  12. F. W. Lytle, in Applications of Synchrotron Radiation, ed. H. Winick, Gordon and Breach Science, New York, 1989, p. 135 Search PubMed.
  13. M. Newville, P. Livins, Y. Yacoby, J. J. Rehr and E. A. Stern, Phys. Rev. B, 1993, 47, 14126 CrossRef CAS.
  14. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky and R. C. Albers, J. Am. Chem. Soc., 1991, 113, 5135 CrossRef CAS; J. Mustre de Leon, J. J. Rehr and S. I. Zabinsky, Phys. Rev. B, 1991, 44, 4146 CrossRef; P. A. O'Day, J. J. Rehr, S. I. Zabinsky and G. E. Brown Jr., J. Am. Chem. Soc., 1994, 116, 2938 CrossRef CAS.
  15. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, 1956 Search PubMed.
  16. Louis J. Cabri, Dalton R. Owens and J. H. Gilles Laflamme, Canad. Miner., 1973, 12, 21 Search PubMed.
  17. M. Shahmiri, S. Murphy and D. J. Vaughau, Miner. Mag., 1985, 49, 547 Search PubMed.
  18. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedure, Wiley, New York, 1954 Search PubMed.
  19. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, New York, 5th edn., 1984 Search PubMed.
  20. S. Mukerjee, S. Srinivasan and M. P. Soriaga, J. Phys. Chem., 1995, 99, 4577 CrossRef CAS.
  21. R. B. Greeger and F. W. Lytle, J. Catal., 1980, 63, 476 CrossRef CAS.
  22. G. H. Via, J. H. Sinfeld and F. W. Lytle, J. Chem. Phys., 1979, 71, 690 CrossRef CAS.
  23. P. J. Schilling, J.-H. He, J. Cheng and E. Ma, Appl. Phys. Lett., 1996, 68, 767 CrossRef.
  24. M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley and R. G. Nuzzo, J. Am. Chem. Soc., 1997, 119, 7760 CrossRef CAS.
  25. R. Woods, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1976, vol. 9, p. 1 Search PubMed.
  26. F. G. Will, J. Electrochem. Soc., 1965, 112, 451 CAS.
  27. M. Peuckert, T. Yoneda, R. A. Dalla Betta and M. Boudart, J. Electrochem. Soc., 1986, 133, 944 CAS.
  28. F. El Kadiri, R. Faure and R. Durand, J. Electroanal. Chem., 1991, 301, 177 CrossRef CAS.
  29. W. Roh, J. Cho and H. Kim, J. Appl. Electrochem., 1996, 26, 623 CAS.
  30. K. Kinoshita, Electrochemical Oxygen Technology, Wiley-Interscience, New York, 1992, p. 50 Search PubMed.
  31. M. L. Sattler and P. N. Ross Jr., Ultramicroscopy, 1986, 20, 21 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.