Mode and sites of incorporation of divalent cations in vaterite

(Note: The full text of this document is currently only available in the PDF Version )

Vesna Noethig-Laslo and Ljerka Brečević


Abstract

Electron paramagnetic resonance (EPR) spectroscopy, along with other analytical methods and techniques (X-ray diffraction, atomic absorption spectroscopy, scanning electron microscopy, etc.) have been used to study the mode of incorporation of divalent cations (Mg2+, Sr2+, Ba2+, Cu2+, Cd2+ and Pb2+) in vaterite. Vaterite, the least stable of the calcium carbonate polymorphs, was prepared by spontaneous precipitation from aqueous solutions and the doping of vaterite was performed by adding a particular divalent cation into a calcium chloride solution before mixing it with a sodium (or potasium) carbonate solution. All vaterite samples, pure or doped with divalent cations, were subjected to γ-irradiation. By studying EPR spectra of the pure vaterite powder the following free radicals were determined: CO3- holes freely rotating at the surface of the spherullites (g=2.0113); CO2- frozen in the matrix (g=2.0031 and g=1.9998), and freely rotating CO2- (g=2.0006) probably located between the carbonate layers. It was found that the alkaline-earth metal cations (Mg2+, Sr2+, Ba2+) did not affect the formation and stability of the above free radicals. Cu2+ and Cd2+ doped to the vaterite phase trapped electrons by forming Cu+ and Cd+, respectively, which led, as a consequence, to increased formation of freely rotating CO3- holes in the near neighbourhood. Pb2+ released electrons readily by forming Pb3+ thus causing a decrease in formation of CO3- holes. In vaterite doped with Cd2+ two additional paramagnetic centers (ga=1.9886 and gb=1.9939), imbedded in two different sites in the vaterite structure were detected.


References

  1. H. J. Meyer, Z. Kristall., 1969, 128, 183 CAS.
  2. G. Behrens, L. T. Kuhn, R. Ubic and A. H. Heuer, Spectrosc. Lett., 1995, 28, 983 CAS.
  3. D. Kralj, Lj. Brečević and A. E. Nielsen, J. Cryst. Growth, 1990, 104, 793 CrossRef CAS.
  4. J. R. Clarkson, T. J. Price and C. J. Adams, J. Chem. Soc., Faraday Trans., 1992, 88, 243 RSC.
  5. N. Nassrallah-Aboukais, A. Boughriet, J. C. Fischer, M. Wartel, H. R. Langelin and A. Aboukais, J. Chem. Soc., Faraday Trans., 1996, 92, 3211 RSC.
  6. R. A. Serway and S. A. Marshall, J. Chem. Phys., 1967, 46, 1949 CrossRef CAS.
  7. S. A. Marshall and J. A. McMillan, J. Chem. Phys., 1968, 49, 4887 CAS.
  8. S. A. Marshall and R. A. Serway, J. Chem. Phys., 1969, 50, 435 CAS.
  9. A. Kai and T. Miki, Radiat. Phys. Chem., 1992, 40, 469 CrossRef CAS.
  10. G. Baquet, J. Dugas, C. Escribe, L. Youdri and C. Belin, J. Phys., 1975, 36, 427 Search PubMed.
  11. M. Barabas, A. Bach, M. Mudelsee and A. Mangini, Appl. Radiat. Isot., 1989, 40, 1105 CrossRef CAS.
  12. R. M. Mineyeva, L. V. Bershov and A. V. Speranskiy, Phys. Chem. Miner., 1993, 20, 136 CAS.
  13. H. Kohno, C. Yamanaka, M. Ikeye, S. Ikeda and Y. Horino, Nucl. Instrum. Methods Phys. Res., Sect. B, 1994, 91, 366 CrossRef CAS.
  14. Lj. Brečević, V. Nothig-Laslo, D. Kralj and S. Popović, J. Chem. Soc., Faraday Trans., 1996, 92, 1017 RSC.
  15. D. Kralj Ph.D. Thesis, University of Zagreb, 1990, p. 147.
  16. Lj. Brečević, D. Kralj and J. Kontrec, J. Cryst. Growth, 1997, 177, 248 CrossRef.
  17. R. Debuyst, F. Dejehet and S. Idrissi, Appl. Radiat. Isot., 1993, 44, 293 CrossRef CAS.
  18. F. Callens, R. Debuyst, F. Dejehet, S. Idrissi and P. Moens, Jpn. J. Appl. Phys., 1994, 33, 4044 CrossRef CAS.
  19. R. Debuyst, F. Dejehet and S. Idrissi, Radiat. Prot. Dosimetry, 1993, 47, 695 Search PubMed.
  20. R. Debuyst, P. de Canniere and F. Dejehet, Nucl. Tracks. Radiat. Meas., 1994, 17, 515 Search PubMed.
  21. R. Stoesser, J. Bartoll, L. Schirrmeister, R. Ernst and R. Lueck, Appl. Radiat. Isot., 1996, 47, 1489 CrossRef CAS.
  22. V. Nothig-Laslo and Lj. Brečević, in preparation.
  23. D. L. Griscom, J. Non-Cryst. Solids, 1980, 40, 211 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.