Atomistic simulation of the effects of calcium and strontium defects on the surface structure and stability of BaSO4

(Note: The full text of this document is currently only available in the PDF Version )

Susan E. Redfern and Stephen C. Parker


Abstract

BaSO4 (baryte), SrSO4 (celestine) and CaSO4 (anhydrite) were studied using atomistic simulation techniques and their equilibrium morphologies determined from the calculated surface energies. Monolayer and bilayer growth of strontium sulfate or calcium sulfate on barium sulfate were modelled and the calculated surface energies used to determine the resulting morphologies. It was found that this overgrowth is energetically unfavourable in all cases. The average energy increase per strontium sulfate added was calculated to be very similar for most faces (0.5–0.6 eV). However, the energy increase per calcium sulfate unit added varied between 0.9 and 1.4 eV. The energies of a layer of SrSO4 or CaSO4 segregated in the bulk of the BaSO4 crystal were also calculated. The structures of the surfaces found to be the most stable were studied in detail ({210} and {001} faces of BaSO4 and SrSO4, {001} and {010} faces of CaSO4). The surface structure of the substrate and overgrowth of both strontium sulfate and calcium sulfate were studied in detail for the {210} and {001} faces of barium sulfate.


References

  1. W. J. Benton, I. R. Collins, I. M. Grimsey, G. M. Parkinson and S. A. Rodger, Faraday Discuss., 1993, 95, 281 RSC.
  2. K. Raju and G. Atkinson, J. Chem. Eng. Data, 1988, 33, 490 CrossRef CAS.
  3. M. C. van der Leeden, D. Kashchiev and G. M. van Rosmalen, J. Colloid Interface Sci., 1992, 152, 338 CAS.
  4. A. Putnis, J. L. Junta-Rosso and M. F. Hochella Jr., Geochim. Cosomochim. Acta, 1995, 59, 4623 Search PubMed.
  5. P. M. Dove and C. A. Czank, Geochim. Cosomochim. Acta, 1995, 59, 1907 Search PubMed.
  6. M. Raines and T. Dewers, J. Petrol. Sci. Eng., 1997, 17, 139 Search PubMed.
  7. A. Zieba, G. Sethuraman, F. Perez, G. H. Nancollas and D. Cameron, Langmuir, 1996, 12, 2853 CrossRef CAS.
  8. A. L. Rohl, D. H. Gay, R. J. Davey and C. R. A. Catlow, J. Am. Chem. Soc., 1996, 118, 642 CrossRef CAS.
  9. M. C. van der Leeden and G. M. van Rosmalen, J. Colloid Interface Sci., 1995, 171, 142 CrossRef CAS.
  10. S. N. Black, L. A. Bromley, D. Cottier, R. J. Davey, B. Dobbs and J. E. Rout, J. Chem. Soc., Faraday Trans., 1991, 87, 3409 RSC.
  11. L. V. Haley, T. A. Mattioli and D. R. Wiles, Can. J. Chem., 1985, 63, 2290 CAS.
  12. A. G. Walton, The Formation and Properties of Precipitates, Interscience, NY, USA, 1967 Search PubMed.
  13. L. Perez and G. H. Nancollas, Scanning Microsc., 1988, 2, 1437 Search PubMed.
  14. D. D. Archibald, B. P. Gaber, J. D. Hopwood, S. Mann and T. Boland, J. Cryst. Growth, 1997, 172, 231 CrossRef CAS.
  15. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, 1954 Search PubMed.
  16. P. P. Ewald, Ann. Phys., 1921, 64, 253.
  17. D. E. Parry, Surf. Sci., 1975, 49, 433 CrossRef CAS.
  18. D. E. Parry, Surf. Sci., 1976, 54, 195 CrossRef.
  19. N. L. Allan, A. L. Rohl, D. H. Gay, C. R. A. Catlow, R. J. Davey and W. C. Mackrodt, Faraday Discuss., 1993, 95, 273 RSC.
  20. G. W. Watson, N. H. de Leeuw, D. Harris, E. T. Kelsey and S. C. Parker, J. Chem. Soc., Faraday Trans., 1996, 92, 433 RSC.
  21. P. W. Tasker, Philos. Mag. A, 1979, 39, 119 Search PubMed.
  22. D. A. Johnson, Some Thermodynamic Aspects Of Inorganic Chemistry, Cambridge University Press, Cambridge, 2nd edn., 1982 Search PubMed.
  23. B. Lewis, in Crystal Growth, ed. B. R. Pamplin, Pergamon Press, Oxford, 2nd edn., 1980 Search PubMed.
  24. W. A. Deer, R. A. Howie and J. Zussman, Rock-Forming Minerals, Longmans, London, 1962, vol. 5 Search PubMed.
  25. P. Hartman and W. G. Perdok, Acta Crystallogr., 1955, 8, 49 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.