Photoisomerization of a sterically constrained merocyanine dye

(Note: The full text of this document is currently only available in the PDF Version )

Andrew C. Benniston and Anthony Harriman


Abstract

A particular concern regarding the photophysical properties of merocyanine 540 derivatives, and related cyanine dyes, involves identifying which double bond in the central polyenic bridge undergoes light-induced isomerization. In order to address this issue we have synthesized a novel merocyanine dye in which the first double bond is built into a cyclic structure that prevents isomerization at this site. Contrary to expectations, the dye photoisomerizes with reasonable efficiency, such that the quantum yields of fluorescence and intersystem crossing to the triplet manifold are kept small. For this dye, isomerization must take place at the central double bond. It is further shown that the strategy of inserting bulky or constraining groups into the polyenic bridge is not a viable approach for the development of highly fluorescent merocyanine dyes.


References

  1. K. S. Gulliya, Novel Chemotherapeutic Agents: Preactivation in the Treatment of Cancer and Aids, R. G. Landes Co., Austin, Texas, 1996 Search PubMed.
  2. F. Sieber, Photochem. Photobiol., 1987, 46, 1035 CAS.
  3. P. H. Aramendia, M. Krieg, C. Nitsch, E. Bittersman and S. E. Braslavsky, Photochem. Photobiol., 1989, 48, 187.
  4. J. Davila, A. Harriman and K. S. Gulliya, J. Chem. Soc., Chem. Commun., 1989, 1215 RSC.
  5. M. Hoebeke, J. Piette and A. Van der Vorst, J. Photochem. Photobiol. B, 1991, 9, 281 CrossRef CAS.
  6. J. Davila, A. Harriman and K. S. Gulliya, Photochem. Photobiol., 1991, 53, 1 CAS.
  7. R. W. Redmond, M. B. Srichai, J. M. Bilitz, D. D. Schlomer and M. Krieg, Photochem. Photobiol., 1994, 60, 348 CAS.
  8. A. Harriman, J. Photochem. Photobiol., 1992, 65, 79 Search PubMed.
  9. A. C. Benniston, K. S. Gulliya and A. Harriman, J. Chem. Soc., Faraday Trans., 1994, 90, 953 RSC.
  10. A. C. Benniston, K. S. Gulliya and A. Harriman, J. Chem. Soc., Faraday Trans., 1997, 93, 2491 RSC.
  11. A. C. Benniston, A. Harriman and C. McAvoy, J. Chem Soc., Faraday Trans., 1997, 93, 3653 RSC.
  12. P. R. Dragsten and W. W. Webb, Biochemistry, 1978, 17, 5228 CrossRef CAS.
  13. N. S. Dixit and R. A. Mackay, J. Am. Chem. Soc., 1983, 105, 2928 CrossRef CAS.
  14. A. C. Benniston, A. Harriman and C. McAvoy, J. Chem. Soc., Faraday Trans., 1998, 94, 159 Search PubMed.
  15. A. C. Benniston and A. Harriman, J. Chem. Soc., Faraday Trans., 1994, 90, 2627 RSC.
  16. M. M. Romanov, Ju. L. Slominskji, A. L. Tolmachev and F. S. Babichev, Dopov. Akad. Nauk. Ukr. Ser. B: Geol. Khim. Biol. Nauki., 1976, 9, 807 Search PubMed.
  17. G. Porter and M. W. Windsor, Discuss. Faraday Soc., 1954, 17, 178 RSC.
  18. I. Carmichael and G. L. Hug, J. Phys. Chem. Ref. Data, 1966, 15, 1.
  19. L. Pekkarinen and H. Linschitz, J. Am. Chem. Soc., 1960, 82, 2407 CAS.
  20. J. K. Hurley, N. Sinai and H. Linschitz, Photochem. Photobiol., 1983, 38, 9 CrossRef CAS.
  21. L. Pauling, The Nature of the Chemical Bond, Cornell, Itheca, New York, 1960 Search PubMed.
  22. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, New York, 1970 Search PubMed.
  23. K. S. Gulliya, J. Davila and A. Harriman, The Cancer J., 1990, 3, 360 Search PubMed.
  24. S. R. Meech and D. Phillips, J. Photochem., 1983, 23, 193 CrossRef CAS.
  25. S. J. Strickler and R. A. Berg, J. Chem. Phys., 1962, 37, 814 CrossRef CAS.